Inverter-Based Resource Disturbance Analysis

Key Findings and Recommendations

Informational Webinar
February 15, 2018
August 16, 2016
Blue Cut Fire Disturbance

Key Findings and Recommendations
Western Interconnection Frequency

<table>
<thead>
<tr>
<th>Event ID</th>
<th>WI_20160816_184506</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event Description</td>
<td>***</td>
</tr>
<tr>
<td>UTC Time</td>
<td>08/16/2016 18:45:06</td>
</tr>
<tr>
<td>Local Time</td>
<td>08/16/2016 11:45:06</td>
</tr>
<tr>
<td>Time Zone</td>
<td>PDT</td>
</tr>
<tr>
<td>M4 Flag</td>
<td>Yes</td>
</tr>
<tr>
<td>BAL003 Flag</td>
<td>Yes</td>
</tr>
<tr>
<td>MW Loss</td>
<td>0</td>
</tr>
<tr>
<td>Value A</td>
<td>59.979</td>
</tr>
<tr>
<td>Value B</td>
<td>59.92</td>
</tr>
<tr>
<td>Point C</td>
<td>59.8669</td>
</tr>
<tr>
<td>Time of C</td>
<td>4.7</td>
</tr>
<tr>
<td>Point C'</td>
<td>-</td>
</tr>
<tr>
<td>Time of C'</td>
<td>-</td>
</tr>
<tr>
<td>A-B [mHz]</td>
<td>59</td>
</tr>
<tr>
<td>A-C [mHz]</td>
<td>112</td>
</tr>
<tr>
<td>FRM_B [MW/0.1Hz]</td>
<td>0</td>
</tr>
<tr>
<td>FRM_C [MW/0.1Hz]</td>
<td>0</td>
</tr>
</tbody>
</table>
500 kV Fault Trace

Phase A amps
Phase B amps
Phase C amps
Residual amps
Solar Resource Loss

- 11:45:15 AM; 2,884.05 MW
- 11:52:16 AM; 2,483.20 MW
- 11:52:15 AM; 2,191.64 MW
- 11:45:16 AM; 1,705.7 MW
Data Gathering

- 26 different solar developments
- All utility scale
- Majority connected at 500kV or 230kV
- 10 different inverter manufacturers
- Reported causes of “trips”
 - Under frequency
 - Under voltage
 - Over voltage
 - DC overcurrent
 - 1 loss of synchronism
Not an Isolated Event

<table>
<thead>
<tr>
<th>#</th>
<th>Date/Time</th>
<th>Fault Location</th>
<th>Fault Type</th>
<th>Clearing Time (cycles)</th>
<th>Lost Generation (MW)</th>
<th>Geographic Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>08/16/2016 11:45</td>
<td>500 kV line</td>
<td>Line to Line (AB)</td>
<td>2.49</td>
<td>1,178</td>
<td>Widespread</td>
</tr>
<tr>
<td>2</td>
<td>08/16/2016 14:04</td>
<td>500 kV line</td>
<td>Line to Ground (AG)</td>
<td>2.93</td>
<td>234</td>
<td>Somewhat Localized</td>
</tr>
<tr>
<td>3</td>
<td>08/16/2016 15:13</td>
<td>500 kV line</td>
<td>Line to Ground (AG)</td>
<td>3.45</td>
<td>311</td>
<td>Widespread</td>
</tr>
<tr>
<td>4</td>
<td>08/16/2016 15:19</td>
<td>500 kV line</td>
<td>Line to Ground (AG)</td>
<td>3.05</td>
<td>30</td>
<td>Localized</td>
</tr>
<tr>
<td>5</td>
<td>09/06/2016 13:17</td>
<td>220 kV line</td>
<td>Line to Ground (AG)</td>
<td>2.5</td>
<td>490</td>
<td>Localized</td>
</tr>
<tr>
<td>6</td>
<td>09/12/2016 17:40</td>
<td>500 kV line</td>
<td>Line to Ground (BG)</td>
<td>3.04</td>
<td>62</td>
<td>Localized</td>
</tr>
<tr>
<td>7</td>
<td>11/12/2016 10:00</td>
<td>500 kV CB</td>
<td>Line to Ground (CG)</td>
<td>2.05</td>
<td>231</td>
<td>Widespread</td>
</tr>
<tr>
<td>8</td>
<td>02/06/2017 12:13</td>
<td>500 kV line</td>
<td>Line to Ground (BG)</td>
<td>2.97</td>
<td>319</td>
<td>Widespread</td>
</tr>
<tr>
<td>9</td>
<td>02/06/2017 12:31</td>
<td>500 kV line</td>
<td>Line to Ground (BG)</td>
<td>3.01</td>
<td>38</td>
<td>Localized</td>
</tr>
<tr>
<td>10</td>
<td>02/06/2017 13:03</td>
<td>500 kV line</td>
<td>Line to Ground (BG)</td>
<td>3.00</td>
<td>543</td>
<td>Widespread</td>
</tr>
<tr>
<td>11</td>
<td>05/10/2017 10:13</td>
<td>500 kV line</td>
<td>unknown</td>
<td>unknown</td>
<td>579</td>
<td>Somewhat Localized</td>
</tr>
</tbody>
</table>
Key Finding #1

- Largest block of solar PV loss (~700 MW) due to underfrequency tripping
- Inverter sensed a near instantaneous frequency of <57 Hz and tripped instantaneously
What Was the Frequency?
OFF NOMINAL FREQUENCY CAPABILITY CURVE

- Quebec
- Western
- Eastern
- ERCOT

No Trip Zone (not including the lines)

Time (sec)

Frequency (Hz)
Curve Data Points:

Eastern Interconnection

<table>
<thead>
<tr>
<th>High Frequency Duration</th>
<th>Low Frequency Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (Hz)</td>
<td>Time (Sec)</td>
</tr>
<tr>
<td>≥61.8</td>
<td>Instantaneous trip</td>
</tr>
<tr>
<td>≥60.5</td>
<td>$10^{(0.935-1.45713t)}$</td>
</tr>
<tr>
<td><60.5</td>
<td>Continuous operation</td>
</tr>
</tbody>
</table>

Western Interconnection

<table>
<thead>
<tr>
<th>High Frequency Duration</th>
<th>Low Frequency Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (Hz)</td>
<td>Time (Sec)</td>
</tr>
<tr>
<td>≥61.7</td>
<td>Instantaneous trip</td>
</tr>
<tr>
<td>≥61.6</td>
<td>30</td>
</tr>
<tr>
<td>≥60.6</td>
<td>180</td>
</tr>
<tr>
<td><60.6</td>
<td>Continuous operation</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Isolated to one inverter manufacturer
• Manufacturer quickly devised solution following event
• Added time delay to inverter frequency tripping
 ▪ Allows inverter to “ride through” transient/distorted waveform period without tripping.
Key Finding #2: Undervoltage Tripping

- 2nd largest block of inverter loss (~450 MW) was attributed to low voltage
• Inverters have three modes of operation
 ▪ Operating (injecting active current into the system)
 ▪ Momentary Cessation (momentarily cease to inject current during voltages outside continuous operating range - .9 to 1.0 per unit)
 ▪ Trip (cease to inject current, disconnect from grid, wait ~ five minutes and return to service if grid voltage and frequency are within bounds)
• The inverters did not “Trip”, they went into Momentary Cessation

• Majority of installed inverters set to momentarily cease current injection for voltages of $V < .9$ p.u. or $V > 1.1$ p.u.

• In inverter language, Momentary Cessation does not equal trip
Actions in response to Blue Cut Fire

- Frequency tripping
 - Manufacturer is adding tripping delay
- Simulations to identify momentary cessation risk
 - ~7200 MW potential
 - Specify maximum delay and ramp rate for Restore Output
Key Findings and Recommendations

- NERC Alert/Recommendation to Industry was issued 6/20/2017
 - Work with inverter manufacturer to ensure no erroneous frequency tripping
 - If momentary cessation is used, restore output in no more than 5 seconds
Figure 2: MW susceptible to Erroneous Frequency Calculations

<table>
<thead>
<tr>
<th>Susceptible to Erroneous Frequency Calculations?</th>
<th>MW</th>
<th>Responses</th>
<th>Inverter units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>6,244</td>
<td>74</td>
<td>7,148</td>
</tr>
<tr>
<td>No</td>
<td>10,527</td>
<td>76</td>
<td>7,230</td>
</tr>
<tr>
<td>Total</td>
<td>16,771</td>
<td>150</td>
<td>14,378</td>
</tr>
</tbody>
</table>

- Yes: 6,244, 37%
- No: 10,527, 63%
Inverter cease output during abnormal voltages?

<table>
<thead>
<tr>
<th></th>
<th>MW</th>
<th>Responses</th>
<th>Inverter units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>14,113</td>
<td>119</td>
<td>11,821</td>
</tr>
<tr>
<td>No</td>
<td>2,657</td>
<td>31</td>
<td>2,557</td>
</tr>
<tr>
<td>Total</td>
<td>16,771</td>
<td>150</td>
<td>14,378</td>
</tr>
</tbody>
</table>

Figure 4: MW cease output during abnormal voltages
• Further study needed for risk associated with momentary cessation (IRPTF)
• Clarify that outside the PRC-024 frequency and voltage ride-through curves are may trip, not must trip
• Review PRC-024 to determine if any changes are needed
October 9, 2017
Canyon 2 Fire Disturbance

Key Findings and Recommendations
Two Fault Events

Smoke-induced L-L fault events caused by Canyon 2 Fire...
Both fault cleared normally...

Fault Event 1:
220 kV
L-L Fault
< 3 cycle clearing

Fault Event 2:
500 kV
L-L Fault
< 3 cycle clearing
Frequency Response from 500 kV Fault Event #2

Event ID: WI_20171009_191428
Event Description: "Solar Generation 900MW loss"
UTC Time: 10/09/2017 19:14:28
Local Time: 10/09/2017 12:14:28
Time Zone: PDT
M4 Flag: Yes
BAL003 Flag: Yes
MW Loss: 900
Value A: 60.002
Value B: 59.948
Point C: 59.878
Time of C: 3.3
Point C': -
Time of C': -
A-B [mHz]: 54
A-C [mHz]: 124
FRM_B [MW/0.1Hz]: 1667
FRM_C [MW/0.1Hz]: 726
Aggregate SCE Solar PV Performance

SCADA Data

Event 1:
682 – 0 = 682 MW

Event 2:
1011 – 74 = 937 MW
Solar PV Outputs

Northeastern
Northern
Eastern
Solar PV Outputs
1. No erroneous frequency tripping
2. Continued use of momentary cessation
3. Ramp rate interactions with return from momentary cessation
4. Interpretation of PRC-024-2 voltage ride-through curve
5. Instantaneous voltage tripping and measurement filtering
6. Phase lock loop synchronization issues
7. DC reverse current tripping
8. Transient interactions and ride-through considerations
Key Findings #1

No erroneous frequency tripping

- Alert recommended GOPs and GOs ensure inverter controls do not erroneously trip on instantaneous frequency measurements
- By October 9, 2017 event, 97% of inverter manufacturer’s BPS-connected fleet had been updated
- Mitigating actions by inverter manufacturer and GOs appear to have worked
Continued use of momentary cessation

• Majority of existing inverters use momentary cessation
• Most use a low voltage threshold of ~0.9 pu
• Recovery of current following momentary cessation varies, relatively slow for grid dynamics
• Blue Cut Fire recommendation – interim solution
• NERC IRPTF studies – new recommendation
 ▪ Stability studies show potential BPS wide-area stability issues
Clarification and Recommendation for Momentary Cessation

$t_{\text{fault}} + 0.5 \text{ sec}$
Clarification and Recommendation for Momentary Cessation

$t_{\text{fault}} + 1.0 \text{ sec}$
Clarification and Recommendation for Momentary Cessation

t_{\text{fault}} + 1.5 \text{ sec}
Clarification and Recommendation for Momentary Cessation

$t_{\text{fault}} + 2.0 \text{ sec}$
Clarification and Recommendation for Momentary Cessation

t_{\text{fault}} + 2.8 \text{ sec}
• Generator Owners should coordinate with their inverter manufacturer(s) to **eliminate momentary cessation (MC) to the greatest extent possible.**

• For inverters where MC cannot be eliminated (e.g., use another form of ride-through mode), MC settings should be changed by:
 - Reducing the MC low voltage threshold to the lowest value possible.
 - Reducing the recovery delay to the smallest value possible (e.g., on the order of 1-3 electrical cycles).
 - Increasing the active power ramp rate to at least 100% per second (e.g., return to pre-disturbance active current injection within 1 second).
 - Setting reactive current priority upon recovery (if applicable) should eliminate the use of MC on all inverters that are capable of continuous current injection during abnormal voltages.
Ramp rate interactions with return from momentary cessation
Interpretation of PRC-024-2 voltage ride-through curve
Interpretation of PRC-024-2 voltage ride-through curve

“May Trip Zone”

...NOT a “Must Trip Zone”
Interpretation of PRC-024-2 voltage ride-through curve

This curve is a minimum requirement. This curves should NOT be a design criteria. Protection should be set based on equipment limitations. Equipment should be designed as robust as possible.
Interpretation of PRC-024-2 voltage ride-through curve

• **Requirement R2:** Each Generator Owner that has generator voltage protective relaying activated to trip its applicable generating unit(s) shall set its protective relaying such that the generator voltage protective relaying does not trip the applicable generating unit(s) as a result of a voltage excursion (at the point of interconnection\(^3\)) caused by an event on the transmission system external to the generating plant that remains within the “no trip zone” of PRC-024 Attachment 2.

• **Footnote 3:** For the purposes of this standard, point of interconnection means the transmission (high voltage) side of the generator step-up or collector transformer.
Instantaneous voltage tripping and measurement filtering

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>> 1.1</td>
<td>5</td>
<td>0.00167</td>
<td>0.1</td>
</tr>
<tr>
<td>> 1.2</td>
<td>4</td>
<td>0.00133</td>
<td>0.08</td>
</tr>
<tr>
<td>> 1.3</td>
<td>4</td>
<td>0.00133</td>
<td>0.08</td>
</tr>
<tr>
<td>> 1.4</td>
<td>3</td>
<td>0.00100</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Key Findings #5

Instantaneous voltage tripping and measurement filtering

<table>
<thead>
<tr>
<th>High Voltage Ride Through Duration</th>
<th>Low Voltage Ride Through Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (pu)</td>
<td>Time (sec)</td>
</tr>
<tr>
<td>≥ 1.20</td>
<td>Instantaneous Trip</td>
</tr>
<tr>
<td>≥ 1.175</td>
<td>0.20</td>
</tr>
<tr>
<td>≥ 1.15</td>
<td>0.50</td>
</tr>
<tr>
<td>≥ 1.10</td>
<td>1.00</td>
</tr>
</tbody>
</table>

![Diagram of Voltage Ride-Through Time Duration Curve](image)

- **No Trip Zone**
Instantaneous voltage tripping and measurement filtering

- IEEE P1547 Transient Overvoltage Limits
- Fundamental Frequency Overvoltage Ride Through
- Transient Overvoltage Ride Through
 - * Momentary cessation is allowed in this region, and actually preferred
 - ** Ride-through under these conditions does not allow momentary cessation
 - *** Ride-through under these conditions does not allow momentary cessation

Time [ms]

POI RMS Voltage [pu]

Inverter Terminal Voltage (Per Unit of Nominal Instantaneous Peak Base)
Phase lock loop synchronization issues

- Grid voltage phase jumps occur (e.g., during faults)
- Inverter PLLs should be robust to withstand BPS phase jumps
- Should not result in inverter tripping or momentary cessation
- Advanced controls should enable “PLL ride-through” rather than tripping
DC reverse current tripping

- Anti-parallel diodes dissipate energy, mitigate voltage spikes
- Can conduct if forward biased (AC voltage > DC voltage)
- UL 1741 requires testing and detection, no specified trip settings
- DC reverse current detection protects panels, not inverter
- Very sensitive settings for one plant
Transient interactions and ride-through considerations

- Interactions between momentary cessation, in-plant shunt capacitors, transient voltages, harmonics, etc., that are not sufficient understood
- Requires detailed electromagnetic transient (EMT) studies needed
Next Steps and Future Work

- Disturbance Report to be published in February 2018
- NERC Alert to be published in likely March 2018
 - Mitigation of momentary cessation
 - Voltage protective control functions
 - PRC-024-2 curve interpretation
 - Transient overvoltage settings
- IRPTF will be publishing a Reliability Guideline on Inverter-Based Resources Performance in Q3 or Q4 2018
• Blue Cut Fire Disturbance Report:
 http://www.nerc.com/pa/rrm/ea/Pages/1200-MW-Fault-Induced-Solar-

• EA Page (for future Disturbance Report):
 http://www.nerc.com/pa/rrm/ea/Pages/default.aspx

• NERC Alerts Page:
 http://www.nerc.com/pa/rrm/bpsa/Pages/Alerts.aspx

• IRPTF Page:
 http://www.nerc.com/comm/PC/Pages/Inverter-Based-Resource-
 Performance-Task-Force.aspx
Questions and Answers

Rich Bauer
Associate Director Reliability Risk Management-Event Analysis
Office (404) 446-9738
Cell (404) 357-9843
rich.bauer@nerc.net

Ryan Quint
Senior Manager, Advanced Analytics and Modeling
Office (202) 400-3015
Cell (202) 809-3079
ryan.quint@nerc.net