Fact Sheet

Vision

- A nation-wide transmission grid that is fully monitored and dynamically controlled for high efficiency, high reliability, low cost, better accommodation of renewable sources, full utilization of storage, and responsive load.
- A new generation of electric power and energy systems engineering leaders with a global perspective coming from diverse backgrounds.

Why CURENT is Needed

- Energy sustainability is one of the most fundamental societal challenges.
- Reliance on fossil fuels creates significant environmental and national security issues.
- Solutions are being pursued which focus mostly on source and load.

CURENT System

In order to achieve our vision, CURENT will develop a system that can showcase wide-area control and monitoring technologies with large penetration of renewables.

<table>
<thead>
<tr>
<th>Years 1-3</th>
<th>Years 4-6</th>
<th>Years 7-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation 1</td>
<td>Generation 2</td>
<td>Generation 3</td>
</tr>
<tr>
<td>- Regional grids with >20% renewables and balance of other clean energy sources</td>
<td>- Reduced interconnected EI, WECC and ERCOT system, with >50% renewable and balance of other clean energy sources</td>
<td>- Fully integrated North American system, with >50% renewable and balance of other clean energy sources</td>
</tr>
<tr>
<td>- Sufficient monitoring to provide measurements for full network and parameter observability.</td>
<td>- Full PMU monitoring at transmission level with some monitoring of loads</td>
<td>- Fully monitored at transmission level and extensive monitoring of loads in distribution systems</td>
</tr>
<tr>
<td>- Closed-loop non-local frequency and voltage control using PMUs</td>
<td>- Fully integrated PMU based closed-loop secondary voltage control system under normal and emergency conditions.</td>
<td>- Closed loop control using wide area monitoring across all time scales and demonstrating full use of transmission capacity</td>
</tr>
<tr>
<td>- Grid architecture including UHV DC and multi-terminal DC</td>
<td>- PMU based control for improved damping of inter-area modes</td>
<td>- Future load composition and selective energy storage</td>
</tr>
</tbody>
</table>

Engineered Platforms

Large Scale

- Develop a large scale simulation platform to demonstrate CURENT Technology.
- Demonstrate to stakeholders how CURENT technology can improve the existing system.

Hardware

- Emulate electric grid system with interconnected clusters of scaled-down sources and loads.
- Use modular, reconfigurable converters for sources, loads, flexible network and scenario emulation.
Generation 1 System Level Projects

HVDC & FACTS
- Develop technologies needed for the future hybrid AC-DC transmission network, including:
 - Advanced HVDC converter technologies
 - Meshed and multi-terminal HVDC control & protection
 - Architecture scheme for better utilization of transfer capability
 - PMU based remedial action scheme for hybrid AC-DC systems

Measurement Based On-Line Grid Condition Assessment Toolbox
- Utilize fast, wide-area monitoring to facilitate improved protection and control functions
- Develop better visualization and support tools for system operators

Frequency Regulation and Control with Large Renewable Penetration and Inverter Control
- Develop methodology and provide characterization on using wind and PV solar energy for dynamic grid frequency and voltage support over wide areas.
- Explore the effects of inverter-connected sources and loads on electromechanical system stability.
- Quantify contributions of distributed, local control policies to system-wide robust stabilization.

Measurement Based Wide-Area Voltage Security
- Use real-time measurements for voltage security assessment (VSA)
- Develop a hybrid VSA scheme integrating model based and measurement based approaches, in particular, for load areas supplied by multiple interface lines.

Resilient Multi-Level Wide-Area Dynamic State Estimator and Cyber Security
- Develop a dynamic state estimator:
 - Tracking the dynamic system state based on available measurements
 - Remaining robust and accurate against measurement delays, losses or errors
 - Estimating network parameters
- Establish cyber security methods:
 - Detect attacks made on measurements and communication systems
 - Share and/or store data securely

POINTS OF CONTACT

Larry Tomsovic
615.974.3461
tomsovic@eecs.utk.edu

Ali Abur
617.373.3051
abur@ece.neu.edu

Joe Chow
518.276.6374
chowj@rpi.edu

Greg Murphy
334.727.8995
gvmurphy@mytu.tuskegee.edu