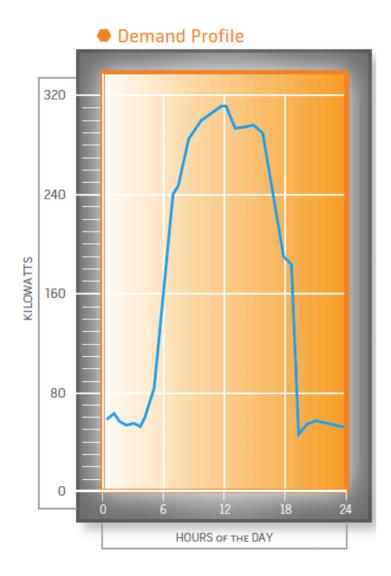
Demand Response with Linear Bidding: Efficiency vs. Risk

Munther A. Dahleh
MIT
Institute for Data, Systems, and Society

Collaboration

- □ Na Li[:] Harvard University
- Lijun Chen: University of Colorado at Boulder
- Qingqing Huang: MIT
- Mardavij Roozbehani: MIT

Demand Response: Demand

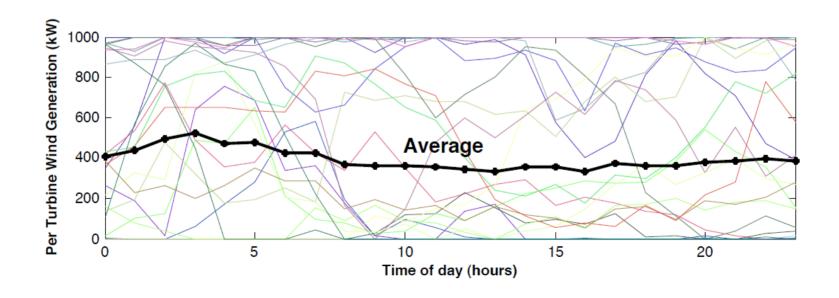


- Electricity demand: highly timevarying
- Provision for peak load
 - Low load factor
 - National load factor is about 55%
 - Underutilized
 - 10% of generation and 25% of distribution facilities are used less than 5% of the time
- A way out: Shape the demand
 - Reduce the peak
 - Smooth the variation

Source: DoE, Smart Grid Intro, 2008

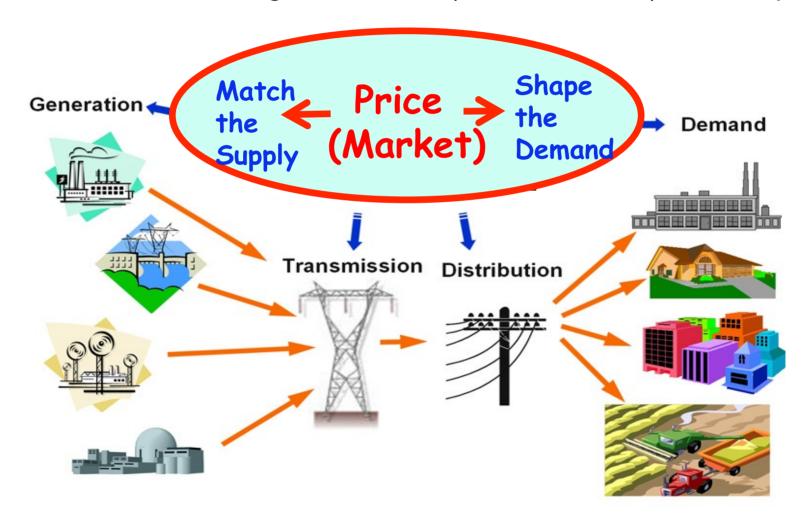
Demand Response: Generation

- Supply becomes highly time-varying
 - steady rise of renewable energy resources
 - Intermittent generation
 - Large storage is not available
- □ A way out: Match the supply ← This work



Demand Response

Use incentive mechanisms such as real-time pricing to induce customers to shift usage or reduce (even increase) consumption



Overall structure

generation

customer

wholesale market

retail market

utility company

Main issues

The role of utility as an intermediary

- Play in multiple wholesale markets to provision aggregate power to meet demands
 - day-ahead, real-time balancing, ancillary services
- □ Resell, with appropriate pricing, to the end users
- Provide two important values
 - Aggregate demand at the wholesale level so that overall system is more efficient
 - Absorb large uncertainty/complexity in wholesale markets and translate them into a smoother environment (both in prices and supply) for the end users.

How to quantify these values and price them in the form of appropriate contracts/pricing schemes?

Main issues

Utility/end users interaction

- Design objective
 - Welfare-maximizing, profit-maximizing
- Price-taking (Competitive) vs Price-anticipating (Game)
- Price of Anarchy
- □ Risk assessment (possible value of Anarchy)

The basics of supply and demand

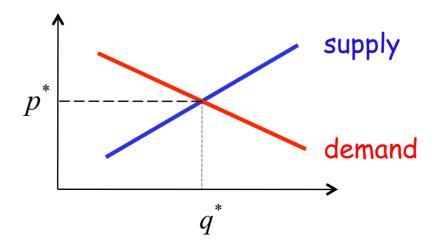
Supply function: quantity demanded at given prices

$$q = S(p)$$

Demand function: quantity supplied at given prices

$$q = D(p)$$

- ☐ Market equilibrium: (q^*, p^*) such that $q^* = S(p^*) = D(p^*)$
 - No surplus, no shortage, price clears the market



Problem setting

- ☐ Supply deficit (or surplus) on electricity: *d* weather change, unexpected events, ...
- ☐ Supply is inelastic

<u>Problem</u>: How to allocate the deficit among demand-responsive customers?

Supply function bidding

- \square Customer *i* load to shed: q_i
- \square Customer i supply function (SF):

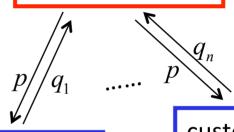
$$q_i(b_i, p) = b_i p$$

- the amount of load that the customer is committed to shed given price p
- Market-clearing pricing:

$$\sum_{i} q_i(b_i, p) = d$$

$$p = p(b) @d / \sum_{i} b_{i}$$

utility company: deficit \emph{d}



customer 1:

$$q_1 = b_1 p$$

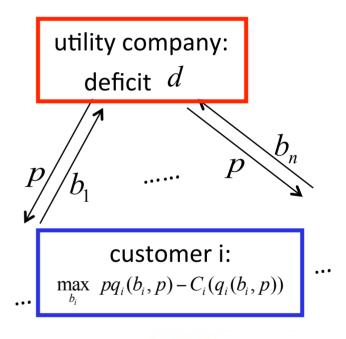
customer n: $q_n = b_n p$

Parameterized supply function

- Adapts better to changing market conditions than does a simple commitment to a fixed price of quantity (Klemper & Meyer '89)
 - widely used in the analysis of the wholesale electricity markets
 - ☐ Green & Newbery '92, Rudkevich et al '98, Baldick et al '02, '04, ...
- Parameterized SF
 - easy to implement
 - control information revelation

Competitive market: Optimal demand response

- ☐ Customer i cost (or disutility) function: $C_i(q_i)$
 - continuous, increasing, and strictly convex
- Competitive market and pricetaking customers
- ☐ Optimal demand response $\max_{b_i} pq_i(b_i, p) C_i(q_i(b_i, p))$



Competitive equilibrium

<u>Theorem:</u> There exist a unique CE. Moreover, the CE is efficient, i.e., maximizes social welfare:

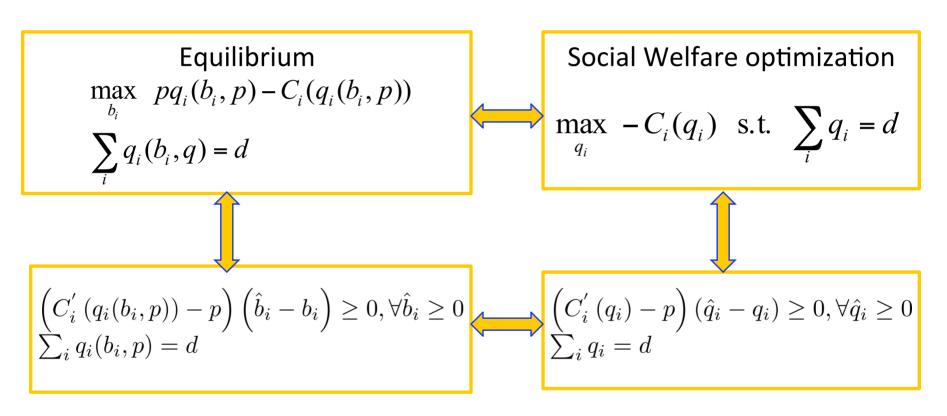
$$\max_{q} -\sum_{i} C_{i}(q_{i}) \quad \text{s.t.} \quad \sum_{i} q_{i} = d$$

Corollary (Individual Rantionality):

Any customer who sheds a positive load receives positive net revenue at the competitive equilibrium, i.e. $\bar{p}\bar{q}_i - C_i(\bar{q}_i) > 0$ for all $i \in \bar{N}$.

Proof

Proof Idea: Compare the equilibrium condition with the optimality condition (KKT) of the optimization problem.



Competitive equilibrium

Index the customers s.t. $c'_1(0) \le c'_2(0) \le \ldots \le c'_n(0)$. Let $C_i^0 := c'_i(0)$

Theorem (A water-filling structure):

Let $\{(\bar{b}_i)_{i\in N}, \bar{p}\}$ be a competitive equilibrium and $\bar{q}_i = q_i(\bar{b}_i, \bar{p})$ be the corresponding load shed by $i \in N$. The set of customers that shed a positive load at the equilibrium, i.e. $\{i : \bar{q}_i > 0\}$, is $\bar{N} = \{1, 2, \dots, \bar{n}\}$ with a unique \bar{n} that satisfies:

$$\sum_{i}^{\bar{n}} (C_i')^{-1} (C_{\bar{n}}^0) < d \leq \sum_{i}^{\bar{n}} (C_i')^{-1} (C_{\bar{n}+1}^0). \quad C_{\bar{n}+1}^0$$

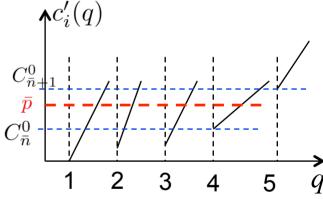
Moreover, the price \bar{p} satisfies:

$$C_{\bar{n}}^0 < \bar{p} \le C_{\bar{n}+1}^0$$

and for any $i \in \bar{N}$, $\bar{p} = C'_i(\bar{q}_i)$.

Corollary (Individual Rantionality):

Any customer who sheds a positive load receives positive net revenue at the competitive equilibrium, i.e. $\bar{p}\bar{q}_i - C_i(\bar{q}_i) > 0$ for all $i \in \bar{N}$.



Iterative supply function bidding

Upon receiving the price information, each customer i updates its supply function

$$b_i(k) = \left[\frac{(C_i')^{-1}(p(k))}{p(k)}\right]^+$$

Upon gathering bids from the customers,
 the utility company updates price

$$p(k+1) = [p(k) - \gamma(\sum_{i} b_{i}(k)p(k) - d)]^{+}$$

- Requires
 - timely two-way communication
 - certain computational capability of the customers

$$p(k+1) = [p(k) - \gamma(\sum_{i} b_{i}(k)p(k) - d)]^{+}$$

utility company:

deficit d

customer 1:
$$p_1(k) = \left[\frac{(C_1')^{-1}(p(k))}{p(k)}\right]^+$$

Strategic demand response

Price-anticipating customer

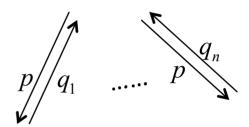
$$\max_{b_i} u_i(b_i, b_{-i})$$

with

$$u_i(b_i, b_{-i}) = p(b)q_i(b_i, p(b)) - C_i(q_i(b_i, p(b)))$$

■ **Definition**: A supply function profile is a Nash equilibrium (NE) if, for all b^* customers i and $b_i \ge 0$, $u_i(b_i^*, b_{-i}^*) \ge u_i(b_i, b_{-i}^*)$

utility company: deficit d



customer i: $\max_{b_i} u_i(b_i, b_{-i})$

Nash Equilibrium

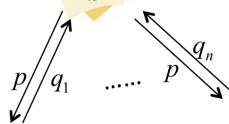
Price-anticipating customer

$$\max_{b_i} p(b_i, b_{-i}) q_i(b_i, p(b_i, b_{-i})) - C_i(q_i(b_i, p(b_i, b_{-i})))$$

- Nash equilibrium exits and is unique when the number of customers is larger than 2
- Each customer will shed a load of less than d/2 at the equilibrium
- Solving another global optimization problem

$$\max_{0 \le q_i \le d/2} -D_i(q_i) \quad \text{s.t.} \quad \sum_i q_i = d$$

$$D_i(q_i) = (1 + \frac{q_i}{d - 2q_i})C_i(q_i) - \int_0^{q_i} \frac{d}{(d - 2x_i)^2} C_i(x_i) dx_i$$



customer i: $\max_{b_i} p(b_i, b_{-i}) q_i(b_i, p(b_i, b_{-i}))$

$$-C_i(q_i(b_i, p(b_i, b_{-i})))$$

Nash equilibrium

Theorem

Assume $|N| \geq 3$. The demand response game has a unique Nash equilibrium. Moreover, the equilibrium solves the following convex optimization problem:

$$\min_{0 \le q_i < d/2} \qquad \sum_i D_i(q_i)$$

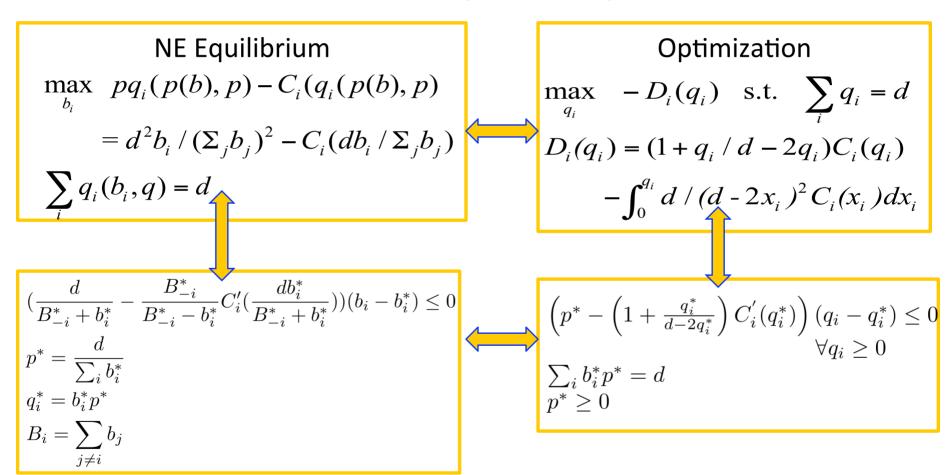
$$s.t. \qquad \sum_i q_i = d,$$

with

$$D_i(q_i) = (1 + \frac{q_i}{d - 2q_i})C_i(q_i) - \int_0^{q_i} \frac{d}{(d - 2x_i)^2}C_i(x_i)dx_i.$$

Proof

Proof Idea: Compare the equilibrium condition with the optimality condition (KKT) of the optimization problem.



Nash equilibrium

Theorem (A water-filling structure):

Assume $|N| \geq 3$. Let $\{(b_i^*)_{i \in N}\}$ be a Nash equilibrium, $p^* = d/\sum_i b_i^*$ be the Nash equilibrium price, and $q_i^* = (b_i^*, p^*)$ be the corresponding load shed by $i \in N$. The set of customers that shed a positive load at the Nash equilibrium, i.e. $\{i: q_i^* > 0\}$, is $N^* = \{1, 2, \dots, n^*\}$ with a unique n^* that satisfies

$$\sum_{i}^{n^{*}} (D_{i}')^{-1} (C_{n^{*}}^{0}) < d \leq \sum_{i}^{n^{*}} (D_{i}')^{-1} (C_{n^{*}+1}^{0})$$
(1)

Moreover, the price p^* satisfies

$$C_{n^*}^0 < p^* \le C_{n^*+1}^0. (2)$$

and for any $i \in N^*$, $p^* = D'_i(q_i^*)$.

Corollary (Individual Rationality):

Any customer who shed a positive load at the Nash equilibrium receives positive net revenue, i.e. $p^*q_i^* - C_i(q_i^*) > 0$ for all $i \in N^*$.

Iterative supply function bidding

Each customer i updates its supply function

$$b_i(k) = \left[\frac{(D_i')^{-1}(p(k))}{p(k)}\right]^+$$

The utility company updates price

$$p(k+1) = [p(k) - \gamma(\sum_{i} b_{i}(k)p(k) - d)]^{+}$$

$$p(k+1) = [p(k) - \gamma(\sum_{i} b_{i}(k)p(k) - d)]^{+}$$

utility company:

deficit d

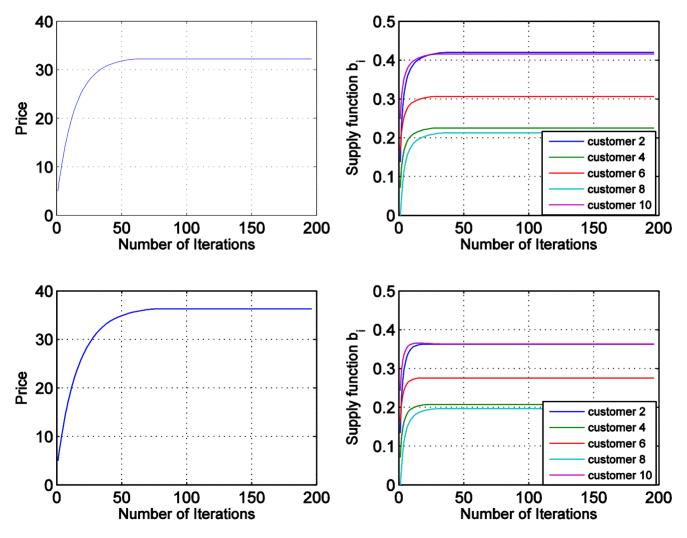
$$p(k) / p(k+1) \qquad \dots$$

$$/ q_1(k) / q_1(k+1) \qquad \dots$$

customer 1:

$$b_i(k) = \left[\frac{(D_i')^{-1}(p(k))}{p(k)}\right]^+$$

Numerical example



Optimal supply function bidding (upper panels) v.s. strategic bidding (lower panels)

Efficiency Loss of NE (Price of Anarchy)

Theorem:

Let $\{(\bar{b}_i)_{i\in N}, \bar{p}\}$ be a competitive equilibrium, $\{(b_i^*)_{i\in N}\}$ be a Nash equilibrium and p^* be the corresponding price at the Nash equilibrium, we have:

- 1. $\bar{N} \subseteq N^*$, where $\bar{N} := \{i : \bar{q}_i := b_i \bar{p} > 0\}$ is the set of customers who shed a positive load at the competitive equilibrium; and $N^* := \{q_i^* := b_i^* p^* > 0\}$ is the set of customers who shed a positive load at the Nash equilibrium.
- 2. $\bar{p} \leq p^* \leq \frac{n-1}{n-2} \frac{M}{m} \bar{p}$, where $M := \max_{i \in N} C_i'(\frac{d}{n}); \ m := \min_{i \in N} C_i'(\frac{d}{n}).$
- 3. $\bar{C} \leq C^*$, and if we further assume $\bar{q}_{\max} := \max_i \bar{q}_i < \frac{d}{2}$, then we have

$$C^* \le \left(1 + \frac{\bar{q}_{\max}}{d - 2\bar{q}_{\max}}\right)\bar{C}.$$

Here $\bar{C} = \sum_i C_i(\bar{q}_i)$ be the total social cost at the competitive equilibrium and $C^* = \sum_i C_i(q_i^*)$ is the total cost at the Nash equilibrium.

Homogeneous Customers

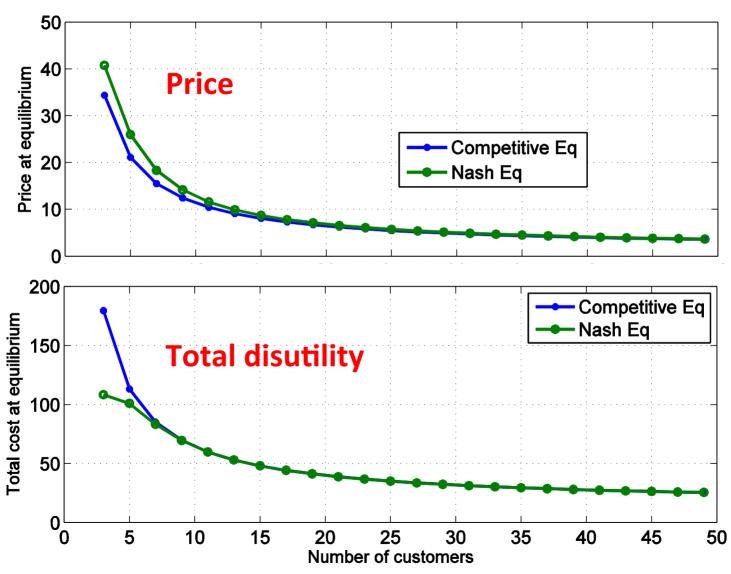
Corollary:

Assume that all the customers have a same cost function. Then we have

1.
$$\bar{p} \leq p^* \leq \frac{n-1}{n-2}\bar{p}$$
. As $n \to \infty$, $p^* \to \bar{p}$

2.
$$\bar{C} \leq C^* \leq \frac{n-1}{n-2}\bar{C}$$
. As $n \to \infty, C^* \to \bar{C}$.

Numerical example



A Special Case with Quadratic Disutility Function

Theorem:

Suppose each customer has a quadratic cost function, i.e. $C_i(q) = \frac{1}{2}c_iq^2$ for each i.

- 1. $\{(\bar{b}_i)_{i\in N}, \bar{p}\}$ is a competitive equilibrium if and only if $\bar{b}_i = \frac{1}{c_i}$.
- 2. $\{(b_i^*)_{i\in N}\}$ is a Nash equilibrium if and only if $\{(b_i^*)_{i\in N}\}$ satisfies the following equalities,

$$b_i^* = (1 - c_i b_i^*) B_{-i}^*, \forall i \in N.$$

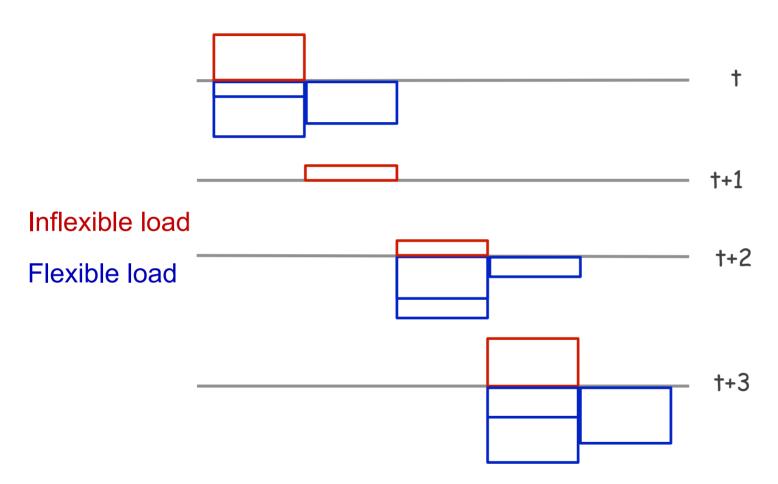
Message:

Both the competitive equilibrium and game equilibrium are independent of the supply deficit d!

Value of Anarchy

- Price of Anarchy: Loss in efficiency due to strategic interactions in contrast to a coordination
- Simple model: one agent with shiftable demand and another with instantaneous demand
- Contrast optimal efficient solution to a Stackelberg game of strategic behavior
- ☐ A new tradeoff: Cooperation can increase endogenous risk

Setup



Model

System state:

Aggregate unshiftable loads

$$\underbrace{x(t)} = \underbrace{d_1(t)} + \underbrace{d_2(t-1) - u(t-1)}$$

aggregate unshiftable unshiftable arrival at current period leftover from last period's shiftable

Consumer arrival with shiftable load

 $d_2(t)$

Load shifting decision:

Only 1 decision maker at $\,t\,$: the new arrival with shiftable load Split load into two periods $(t,t+1)\,$ based on $(x(t),d_2(t))\,$

$$(u(t), d_2(t) - u(t))$$

Problem Formulation

Deadline constraints on demands:

$$\sum u_{t,i} = i' \text{th work load}$$

t in i'th active window

Endogenous prices couple individual decisions:

$$p_t \propto \sum_i u_{t,i}$$

Non-cooperative decision making: Minimize individual cost

$$\min_{u_{t,i}} p_t u_{t,i} + \mathbb{E}[p_{t+1} u_{t+1,i}] \leftarrow$$

• Cooperative decision making:

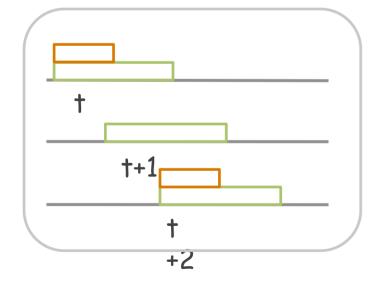
Minimize aggregate cost

$$\min_{[u_{t,i}]_{t,i}} \mathbb{E}\left[\text{time average of } \sum_{i} p_t u_{t,i}\right]$$

Solution: Strategic

Symmetric Markov Perfect equilibrium in dynamic stochastic game

$$u^{s}(x(t), d_{2}(t)) = \arg\min_{u} \{p(t)u + \mathbf{E}_{t}[p(t+1)(d_{2}(t)-u)]\}$$



$$p(t) = x(t) + u$$

$$p(t+1) = x(t+1) + us(x(t+1), d2(t+1))$$

Overlapping type 2 consumers

Flavor of Stackelberg competition

Solution: Strategic

Symmetric Markov Perfect equilibrium in dynamic stochastic game

$$u^{s}(x(t), d_{2}(t)) = \arg\min_{u} \{p(t)u + \mathbf{E}_{t}[p(t+1)(d_{2}(t)-u)]\}$$

Equilibrium strategy

Unique MPE with linear stationary equilibrium strategy:

$$u^{s}(x, d_{2}) = -\underbrace{\frac{1}{2(1 + \sqrt{1 - \frac{q_{2}}{2}})}}_{a^{s}} x + \underbrace{\frac{1}{1 + \frac{1}{\sqrt{1 - \frac{q_{2}}{2}}}}}_{b^{s}} d_{2} + \underbrace{\frac{q_{1}\mu_{1} + q_{2}\mu_{2} \frac{1}{1 + \sqrt{1 - \frac{q_{2}}{2}}}}{2(1 + \sqrt{1 - \frac{q_{2}}{2}})}}_{e^{s}}$$

Solution: Cooperative

Bellman equation for infinite horizon average cost MDP

$$\lambda^{c} + V^{c}(x) = (1 - q_{2})(x^{2} + \mathbf{E}[V^{c}(d_{1})]) + q_{2}\mathbf{E}[\min_{u}\{(x + u)^{2} + V^{c}(d_{2} - u + d_{1})\}]$$

Optimal stationary policy

There exists an optimal linear stationary policy:

$$u^{c}(x, d_{2}) = -\underbrace{\frac{1}{1 + \sqrt{1 - q_{2}}}}_{a^{c}} x + \underbrace{\frac{1}{1 + \frac{1}{\sqrt{1 - q_{2}}}}}_{b^{c}} d_{2} + \underbrace{\frac{q_{1}\mu_{1} + q_{2}\mu_{2} \frac{1}{1 + \sqrt{1 - q_{2}}}}{1 + \sqrt{1 - q_{2}}}}_{e^{c}}$$

Welfare impacts

Under linear stationary policy

$$u(x,d_2) = -ax + bd_2 + e$$

Efficiency/Welfare

Variance
$$-\frac{1}{2}\mathbf{E}[U(t)^2] = -\frac{1}{2}\lambda$$

Risk

Tail probability $\Pr(x(t) \ge M)$

$$\mathcal{X} = \mathcal{X}_k$$
 with probability $q_2^k(1 - q_2)$

$$\mathbf{E}[\mathcal{X}_k] = \frac{(1 - a^{k+1}\mu_1 + (1 - a^k)((1 - b)\mu_2 - e))}{1 - a}$$

$$Var[\mathcal{X}_k] = \frac{(1 - a^{2(k+1)})\sigma_1^2 + (1 - a^{2k})(1 - b)^2\sigma_2^2}{1 - a^2}$$

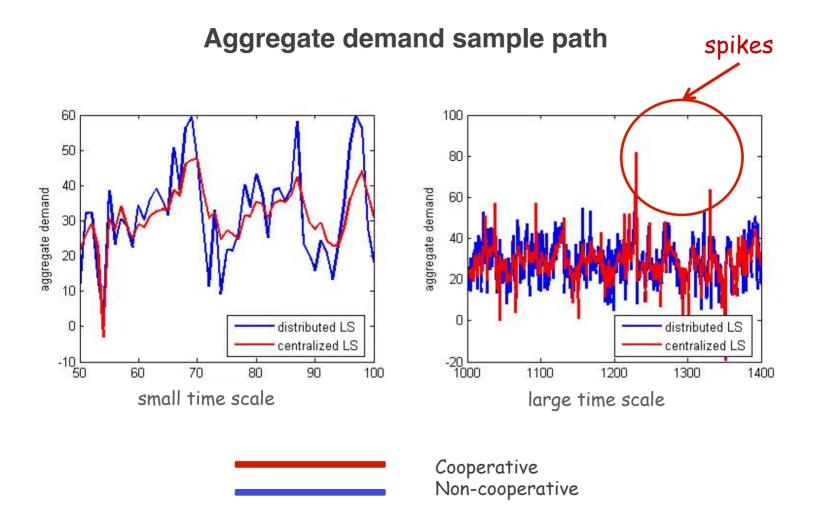
$$u^{s}(x, d_{2}) = -a^{s}x + b^{s}d_{2} + e^{s}$$

V

Cooperative

$$u^{c}(x, d_{2}) = -a^{c}x + b^{c}d_{2} + e^{c}$$

Price of Anarchy: what about risk?



Example I: L = 2

Aggregate demand stationary distribution



Concluding remarks

- Studied one abstract models for demand response
 - Characterized competitive as well as strategic equilibria
 - □ Proposed distributed demand response algorithms based on optimization problem characterizations
 - Characterized the efficiency loss and price of the gametheoretic equilibrium
- Risk Analysis:
 - □ Performance-robustness Tradeoffs
 - Market Mechanism

Thank you!