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KILOWATTS

Demand Response: Demand

@® Demand Profile

HOURS oF THE DAY

7 Electricity demand: highly time-
varying
3 Provision for peak load

O Low load factor
- National load factor is about 55%

O Underutilized

+ 10% of generation and 25% of
distribution facilities are used less
than 5% of the time

7 A way out: Shape the demand
0 Reduce the peak
0 Smooth the variation

Source: DoE, Smart Grid Intro, 2008



Demand Response: Generation

3 Supply becomes highly time-varying
0 steady rise of renewable energy resources
- Intermittent generation
0 Large storage is not available

I A way out: Match the supply <= This work
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Demand Response

Use incentive mechanisms such as real-time pricing to induce
customers to shift usage or reduce (even increase) consumption

Demand




Overall structure

generation customer

retail
market

wholesale
market

company




Mailn Issues

The role of utility as an intermediary
Q Play in multiple wholesale markets to provision aggregate power
to meet demands
e day-ahead, real-time balancing, ancillary services

O Resell, with appropriate pricing, to the end users

Q Provide two important values

e Aggregate demand at the wholesale level so that overall system is
more efficient

e Absorb large uncertainty/complexity in wholesale markets and
translate them into a smoother environment (both in prices and
supply) for the end users.

How to quantify these values and price them in the
form of appropriate contracts/pricing schemes?



Mailn Issues

Utility/end users interaction
3 Design objective
e Welfare-maximizing, profit-maximizing
Q Price-taking (Competitive) vs Price-anticipating (Game)
3 Price of Anarchy
0 Risk assessment (possible value of Anarchy)



The basics of supply and demand

T Supply function: quantity demanded at given prices

q=5S(p)
T Demand function: quantity supplied at given prices

q=D(p)
7 Market equilibrium: (¢".7") such that ¢ =S(»)=D(p")

Q No surplus, no shortage, price clears the market

supply

demand

>




Problem setting

3 Supply deficit (or surplus) on electricity: 4
weather change, unexpected events, ...

T Supply is inelastic

Problem: How to allocate the deficit among demand-
responsive customers?




Supply function bidding

7 Customer I load to shed: ¢

T Customer i supply function (SF):

qz'(biop) = bip
O the amount of load that the

customer is committed to shed
given price p

utility company:
deficit d

WA\

I Market-clearing pricing:

customer 1:
q, = b1p

E%(biap) =d

\ 4

p=pb) @/ YD

Pl

customer n:
q,=b,p




Parameterized supply function

T Adapts better to changing market conditions than does a
simple commitment to a fixed price of quantity (Klemper &
Meyer '89)

0 widely used in the analysis of the wholesale electricity markets
O Green & Newbery 92, Rudkevich et al ‘98, Baldick et al ‘02, ‘04, ...

T Parameterized SF

O easy to implement

O control information revelation



Competitive market: Optimal demand response

T Customer 1 cost (or disutility)
function: Ci(q,)

O continuous, increasing, and strictly utility company:
convex deficit d
3 Competitive market and price- b,
taking customers b/ P
. customer i:
3 Optimal demand response | max pa,(bp)-Cla 6, p)

n}flx pql(blap)_cz(ql(bﬁp))

Mg



Competitive equilibrium

Theorem: There exist a unique CE. Moreover, the CE is efficient,
i.e., maximizes social welfare:

max —E C.(q,) s.t. qu:d
q 3 .

Corollary (Individual Rantionality):

Any customer who sheds a positive load receives positive net revenue at the
competitive equilibrium, i.e. pg; — C;(g;) > 0 for all i € N.



Proof

Proof Idea: Compare the equilibrium condition with the optimality
condition (KKT) of the optimization problem.

Equilibrium Social Welfare optimization
rnbax P4 (biap) - Ci (ql' (biap))

zqz'(wa) =d

| |

C; (gi(bi,p)) — p) (bi — bi ) > 0,¥b; >0 C: (¢:)—p) (G —q:) > 0,¥4 >0
g:i%(biap)_d >< > <:>§:iqz'd )

= max -C(q,) st qu. =d
q; -



Competitive equilibrium
Index the customers s.t. ¢}(0) < c5h(0) < ... <, (0). Let CY := ¢(0)

Theorem (A water-filling structure):

Let {(b;)icn, P} be a competitive equilibrium and g = ¢;(b;,p) be the corre-
sponding load shed by ¢« € N. The set of customers that shed a positive load
at the equilibrium, i.e. {i : g > 0}, is N = {1,2,--- ,n} with a unique 7 that
satisfies:

) ) Ac;i(q)
>_(C)THCR) <d< D (C)THCR

(2

Moreover, the price p satisfies:

Ch<p<Chyy

and for any i € N, p = Cl(q;).
Corollary (Individual Rantionality):

Any customer who sheds a positive load receives positive net revenue at the
competitive equilibrium, i.e. pg; — C;(g;) > 0 for all i € N.



Iterative supply function bidding

Upon receiying the price informatior?, each ok +1) =[p(k)—}/(2bi(k)p(k)—d)]+
customer i updates its supply function ,.

~_1 utility company:
bl(k) — [(Cz) (p(k))]+ deficit d
p(k)

Upon gathering bids from the customers,  p(ky/ p(k +1)

the utilit datesprice o /.
e utility company updates price q,(k) (e +1)
plk+1) =[p(k) -y (Y b,(k) p(k) - )T’

Requires b(k)=[

customer 1:
(C) ' (p(k))

p(k) ]

O timely two-way communication

Q certain computational capability of the %
customers ﬁ «




Strategic demand response

T Price-anticipating customer —
max u,(b,,b_)) utility company:
" deficit d

with

u,(b;,b_;) = p(b)q,;(b,, p(b))-C,(q;(b;, p(b))) \
p % ..... N

7 Definition: A supply function profile
is a Nash equilibrium (NE) if, for all ?
customers i and b, =0, customer i:

u, (b, ,b2,) = u,(b,,b.,) T max w(bb)

Pl



Nash Equilibrium

A Price-anticipating customer
mbax p(biab_i)qz' (bia p(biab_i)) - Ci (ql' (bia p(biab_i)))

T Nash equilibrium exits and is unique when the
number of customers is larger than 2

7 Each customer will shed a load of less than d/2

at the equilibrium customer I
rnbax p(biab—i)ql'(bi’p(bi’b—i))
7 Solving another global optimization problem - C.(q,(b,, p(b,,b.,)))

Jmax =Di(q,) st. qu"

Dfg)=(1+ 220G, (@) f(d_z S Gl Mg




Nash equilibrium

Theorem

Assume |N| > 3. The demand response game has a unique Nash equilibrium.
Moreover, the equilibrium solves the following convex optimization problem:

min Z D;(q;)

0<q;<d/2

S.t. Zqi = d,

with

qi &
Di(g:) = (1 + q,)Cz'(qv;) —/0 (d—21,)° Ci(w;)dw;.



Proof

Proof Idea: Compare the equilibrium condition with the optimality
condition (KKT) of the optimization problem.

NE Equilibrium Optimization
max pgq,(p(b), p) - C,(q,(p(b), p) max - D,(q,) st >a, =
=,/ (25, - Cdb 1 25) SV b ) < (144, d - 24)C(4,)
> aib,q) = dH — [ d /(d -2x, ) Cy(x, )ax,
d B, 7, db* . .
bt = d <:> Vq; > 0
2.0} > bipr=d
q; = b;p* p* >0
Bi=> b,

J#i



Nash equilibrium

Theorem (A water-filling structure):

Assume |N| > 3. Let {(b})icn} be a Nash equilibrium, p* = d/ >, b be the
Nash equilibrium price, and ¢ = (b, p*) be the corresponding load shed by
t € N. The set of customers that shed a positive load at the Nash equilibrium,
ie. {i:qf >0}, is N* ={1,2,--- ,n*} with a unique n* that satisfies

*

n

> (D) HCp) <d < Z(Dé)_l(cg*ﬂ) (1)

Moreover, the price p* satisfies
and for any i € N*, p* = Di(q}).

Corollary (Individual Rationality):

Any customer who shed a positive load at the Nash equilibrium receives positive
net revenue, i.e. p*q’ — C;(qf) > 0 for all i € N*.




[terative supply function bidding

T Each customer 1 updates its
supply function

D) '(p(k
b (k) =L (PR
p(k)
T The utility company updates
price

plk+1)=[p(k)- 7/(2 b,(k) p(k) - d)I"

]+

plk+1)=[p(k) - V(E b,(k)p(k)-d)I"

utility company:
deficit d

p(kyf ptkyh)y .
4 () q,(k+1)

customer 1:

b () (LD ).

p(k)

Pl



Numerical example
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Efficiency Loss of NE (Price of Anarchy)

Theorem:

Let {(b;)icn, P} be a competitive equilibrium, {(b});en} be a Nash equilibrium
and p* be the corresponding price at the Nash equilibrium, we have:

1. N C N* where N := {i : @; :== b;p > 0} is the set of customers who shed a
positive load at the competitive equilibrium; and N* := {q} := bjp* > 0}
is the set of customers who shed a positive load at the Nash equilibrium.

_ 1M - .
2. p<p* < 2=t M5 where M := max;en C}(2); m:= min;en C}(2).

3. C < (C*, and if we further assume Gpax = max; g; < %, then we have

Jmax ~
C* < (1 .
B ( i d _ 2QIrnaJx)Cf

Here C = Y. Ci(q;) be the total social cost at the competitive equilibrium
and C* = > . C;(q]) is the total cost at the Nash equilibrium.

1



Homogeneous Customers

Corollary:

Assume that all the customers have a same cost function. Then we have

1.ﬁ§p*<”—_1]3. Asn— oo, p" —p

— n—

2. C’SC*gZ—:;C—’. As n — 00,C* = C.



Total cost at equilibrium

Price at equilibrium
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A Special Case with Quadratic Disutility Function

Theorem:

Suppose each customer has a quadratic cost function, i.e. C;(q) = ic;q? for

. 2
each 1.

1. {(b_%)z CN p} is a competitive equilibrium if and only if b; = +.

7

2. {(bj);cn ) is a Nash equilibrium if and only if {(b]),. 5} satisfies the fol-
lowing equalities,

b* = (1 — ¢;b?)B*,,Vi € N.

1

Message:

Both the competitive equilibrium and game equilibrium
are independent of the supply deficit d!



Value of Anarchy

A Price of Anarchy: Loss in efficiency due to
strategic interactions in contrast fo a coordination

7 Simple model: one agent with shiftable demand and
another with instantaneous demand

3 Contrast optimal efficient solution to a
Stackelberg game of strategic behavior

7 A new tradeoff: Cooperation can increase
endogenous risk

30



Inflexible load

Flexible load

Setup

t+1

T+2

T+3

31



Model

System state:

Aggregate unshiftable loads x(t)

(1) — dy (¢) b do(t—1) —ult—1)

~~~ S—~— ~ ~~ -
aggregate unshiftable unshiftable arrival at current period leftover from last period’s shiftable

Consumer arrival with shiftable load da(?)

Load shifting decision:

Only 1 decision maker at ¢t : the new arrival with shiftable load
Split load into two periods (¢, + 1) based on (z(t), da2(t))

(u(t), dao(t) — u(t))



Problem Formulation

Deadline constraints on demands:

Z u¢,; = ¢'th work load

t in 7’th active window

Endogenous prices couple individual decisions:

Pt X E Ut
i

Non-cooperative decision making: Minimize individual cost
I}}intht,i _|‘ E[pt+1Ut_|_]_’z] /
t,1

Cooperative decision making: Minimize aggregate cost

min [E [time average of E Pt i
i

[ut,i]t,i

33



Solution: Strategic

Symmetric Markov Perfect equilibrium in dynamic stochastic game

u’(x(t), d2(t)) = argminip(t)u + Eq[p(t + 1)(da(t) — u)];

p(t) = z(t) +u
+ pt+ 1) =a(t+1)+u*(z(t+1),d2(t + 1))
1 Overlapping type 2 consumers
LA —

Flavor of Stackelberg competition



Solution: Strategic

Symmetric Markov Perfect equilibrium in dynamic stochastic game

u®(x(t),ds(t)) = arg m&n{p(t)u + Ei[p(t + 1)(d2(t) — u)]}

Equilibrium strategy

Unique MPE with linear stationary equilibrium strategy:

1
1 Qi1 + gau2 1t /1-2

do +

1
S x_'_ 2
20+/1-%) 1+ = 2(1++/1— Z)

2 \ .
A\ - 7
as Vo 68

bs

u®(x,ds) =




Solution: Cooperative

Bellman equation for infinite horizon average cost MDP

A+ V(@) = (1 - q2) (2" + B[V(d1)]) + 2E[min{(z +u)* + V(d2 — u + d1)}]

Optimal stationary policy

There exists an optimal linear stationary policy:

B 1 .t 1 d2+Q1M1+Q2M2ﬁ
T e

ac VO

be e

u(x,ds) =

7

4




Welfare impacts

Under linear stationary policy — u(x,ds) = —ax + bds + €

Efficiency/Welfare Risk
Tail probability  Pr(xz(t) > M)

X = X}, with probability qlz‘(l —q2)

Variance — %E[U(t)Q] = — %)\ E[X}] = (1—a""py + (11— a®)((1 = b)pa — €))
Varja) = 12 a®* D)o + (1 — a?*)(1 - b)*03

1—a?

u®(x,ds) = —a’r + b°dy + €°
AV

Cooperative u(xz,ds) = —ax + b°dy + e°

Strategic



Price of Anarchy: what about risk?

aggregate dernand

Aggregate demand sample path
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centralized LS
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ExampleI: L = 2

Aggregate demand stationary distribution
Low variance
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Concluding remarks

7 Studied one abstract models for demand response
a Characterized competitive as well as strategic equilibria

Q Proposed distributed demand response algorithms
based on optimization problem characterizations

a Characterized the efficiency loss and price of the game-
theoretic equilibrium

T Risk Analysis:

3 Performance-robustness Tradeoffs
3 Market Mechanism

Thank youl



