JST-NSF-DFG-RCN

Workshop on Distributed Energy Management Systems -Future Power System Architectures and Control Paradigms-

Power System Operation with Battery Energy Storage System Based on Forecasted Photovoltaic Power Output

<u>Taisuke Masuta</u> (JST-CREST Imura team) (The Institute of Applied Energy, IAE)

Apr. 21, 2015

Research objective

Supply and demand operation in future power systems (2030-2050)

To utilize as much PV energy as possible

Government Target: 53 GW (25% of peak load, 5% of electric energy consumption)

Base Case: 102 GW (50% of peak load, 10% of electric energy consumption)

Extreme Case: 330 GW (150% of peak load, 33% of electric energy consumption)

$lue{}$ Operation based on day-ahead forecasted PV power (1) $_{ extstyle 3}$

Previous day: Unit commitment based on forecasted PV power

Objective function: Minimize operational cost of generators **Constraint conditions**

- Balance between supply and demand
- > Upper and lower limits of output of generators
- Regulating capacity for load fluctuation (LFC capacity)
- Priority dispatch of PV generation

Given day: Optimal load dispatch

Output regulation of connected generators

- > Power shortfall <- greater than the upward reserve capacity
- > PV suppression <- less than the downward reserve capacity

Operation based on day-ahead forecasted PV power (2) 4

Simulation Condition

Power system model of Kanto area of Japan

Generation data

Load data: data of Tokyo-EPCO in May 2010

Irradiation data: actual data of Kanto area in May 2010

Forecast data: calculated data based on the actual data

Operation based on day-ahead forecasted PV power (3) 5

Prediction intervals -> possible ranges of the actual PV power outputs

UCs are determined based on the original forecast, perfect forecast, or upper/lower bounds of prediction intervals with confidence of 80 %.

- Upper bound -> reduce surpluses
- Lower bound -> reduce outages

Original

Perfect

Lower bound of 80%

Upper bound of 80%

Upper bound of 80%

Original

Simulation results 1

Perfect

Lower bound of 80%

Total energy shortfall (outage)

Total suppressed PV energy (surplus)

Possible total PV generation in May: 3,900 (GWh)

- Outage can be reduced close to zero.
- Surplus cannot be avoided even if the output is perfectly forecasted.
 - Improvement of forecast accuracy has a limitation.
 - Battery energy storage systems (BESSs) are necessary.

Application of battery energy storage system (BESS) (1)

- Difficult to determine both generator and BESS operations simultaneously considering...
 - PV generation forecast error
 - PV power output suppression
 - Starting/stopping scheduling of generators
 - Charge/discharge of BESS

Proposed operation method

- Firstly determine charge/discharge schedule of BESS
- 2. Secondly determine UC of generators based on 1

■Application of battery energy storage system (BESS) (2) 8

Interval analysis based on prediction intervals (80%) of PV generation

- Generation schedule of power plants
- Charge/discharge schedule of BESS

- There are an endless number of pathways.
- To find the upper pathway of power generation is important.
 - > To secure reserve capacity as much as possible
 - Corresponding to the upper pathway of net load = the lower bound of PI
- A pathway of charge/discharge corresponding to the upper pathway of generation is selected.

Application of battery energy storage system (BESS) (3)

Simulation results 2

Impact of forecast errors

Total energy shortfall (outage)

Total suppressed PV energy (surplus)

- Suppressed energy becomes small for a larger value of BESS.
- Energy shortfall becomes large for a larger value of BESS.
 - BESS charges/discharges according to the day-ahead schedule.
 - BESS does not always discharge during shortage of supply.

Charge/discharge should be re-scheduled with more accurate forecast.

Application of battery energy storage system (BESS) (4)

Simulation results 3 (Re-scheduled case)

Total energy shortfall (outage)

Total suppressed PV energy (surplus)

- Charge/discharge of BESS is re-scheduled based on perfect forecast after determining UC.
- Energy shortfall becomes smaller than the case without BESS.
 - Improve the accuracy of the forecast
 - Change the operation method of BESS

Conclusion

Future power system operation with extremely large capacity of PV generation.

- Difficult based only on the conventional power system engineering
- Necessary to apply
 - intelligent control methods
 - accurate forecasting methods

