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Installed PV Capacity in Japan
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Installed PV Capacity in Japan
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Framework of Supply-Demand-Storage Balancing
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Framework of Supply-Demand-Storage Balancing
Supply side

[G\;\g Generation power

aB)

Day-ahead scheduling

. ; uc

[GV

(O8]

How we treat prediction uncertainty?
1. What prediction information effective? |
2. How epr0|t this information?
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Framework of Supply-Demand-Storage Balancing
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Day-ahead

reduced to 60%
Local
forecasts
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Regional G

0.031

forecasts

Forecast horizon

1 hour-ahead

Forecast Error RMSE [kWh/m2]

e.g., J.G.S. Fonseca Jr. et al,,
Photovoltaics Research and Applications 2014

0.031 [KWh/mZ2] implies
error is 3GW for 100GW PV
(3% error): very small !

Progress in

Forecast Error Evaluation

Numerical weather prediction based machine learning method
by Ozeki Group
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Prediction Interval of PV Power Generation

Relation between Forecast Prediction interval with confidence

error and Clearness Index tokyoden 100716
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e.g., H. Ohtake et al., Energy Procedia, Vol. 59, pp.278-284, 2014




Framework of Supply-Demand-Storage Balancing
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Stochastic Approach & Interval Approach
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Problem Formulation

[Problem]

Given an interval [d,d] C R” Find V* := {v*(d)|d € [d, d]}

[GW]

[GW]

250 5 10 15 20
15 \

Tro

Optimization problem

[ v@=wgmn S0 O\

Cost function
T

J(v) = {f(v(k)) + g(Az*™ (k))}
k—1 Fuel cost Battery deterioration cost

S.t. :
r(k+1) =z(k) + aAz™ — —
Battery stored energy p
d(k) = v(k) — (Az™ (k) — Az®" (k)
Net load

Az®. < Az®(k) < Az®

nin max @ € {in,out}

Lmin S il?(k) S Lmax
x(0) = x(T") To use battery sustainably
11




Interval Approach to Worst Case Scenario

20

Optimal generation power schedule

Net load prediction

0 3 Cime | Optimization probley Cimem = 20

[ Infinite number of trials may be required ! ]

Hard to obtain the bounds of possible solutions for all
net load predictions!
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Monotonicity Based Approach

For example ==

Positive Negative  =-- y
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- can find the bounds of possible optimal solutions by finite trials

- can prove that the optimization problem is monotone w. r.t d
(the sign is constant)
e.g., T. Ishizaki et al., Proc. of MTNS14, pp.792-799, 2014 13



Area to be controlled

Tokyo (19million)

Load (max)

48[GW]

Installed PV (max)

23[GW] (26%)

Inverter capacity of
installed Battery

+10[GW] (15%)

Installed Battery (max)

80[GWh] (15%)

C/D efficiency

0.9 for both
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Stochastic Approach vs Interval Approach
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Framework of Supply-Demand-Storage Balancing
Supply side

[GW]
30

Day-ahead ~
prediction of
net load

-30

0 10  201[n]

Generation power

/b

[GW]

ay-ahead scheduling

30

) Environmental and

Economic Dispatch
. Control (EEDC) |
0 10 20 [h]\ d — o — Aaj \
“net load” is
load — py  [6w) Battery charge

30

Ax

0}
-30

0 10 20 [h]
Consumer side

s

/%axé@scheduling to aggre rs
~Harmonized Dispatch Plan (HDP

Day-ahead scheduling
Unit commitment (UC)

Y-

Real-time operation
Economic Dispatch Control (EDC)

——

- requests on battery C&D, power
consumption, PV suppression
along with incentive

Real-time opé 0 consumers
Harmonized Consumer-side
Control (HDC)

-Control based on the request by

HDP and SOC of battery in each
consumer >




HDP (Harmonized Dispatch Plan)

Entire system: d(t) = v(t ) — Ax(t)
Aggregator i: d;(t) = v;(t) — ACEZ( ), i=1,....N

Day-ahead predictign / Charge power of battery
of net load Power at NW connection point (consumption power)
Supply side

Problem of finding requests to Aggregators
Givenv™ (t) and d;(t), i=1,...,N,

N
findv;(t). i=1,...,N such that Zvi(t) ~ v*(t)

i=1
s.t. constraints on battery capacity etc.

_____

How should we deal with prediction uncertainty ? Aggregator
Consider low-time-resolved requests !

- Constraints are relaxed
- Flexibility of consumers is increased

e.g., T. Sadamoto, et al., IEEE Trans on Smart Grid, 6-2, 853-865, 2015 17

% - Prediction uncertainty is reduced
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HDP: Low-time Resolution Request
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HDP: Low-time Resolution Request
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HDP: Time Shifted Request
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HDP: Time Shifted Request
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Framework of Supply-Demand-Storage Balancing
Supply side
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Project Research Topics

Target: System Theory for Harmonized Power System
Control Based on Photovoltaic Power Prediction

PV-prediction based, Spatiotemporally Cooperative

Power System Control

- To deal with prediction uncertainty with heavy-tail
distribution, need stronger ST-cooperation of various

controls such as EEDC,UC,EDC,LFC,GF,DR,HDP,HDC,....
Including control of transmission/distribution networks

- Collaboration room with digital power system simulator

Structure Design of Power System including Mid-layer

- Roles of mid-layer including aggregators
- Markets points of view
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