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Background and Motivation

e Electricity Deregulation is ongoing in Japan
“Electric energy must be treated as
commodity...” (Schweppe et al. 1988)

e Strategic Behaviors of supply side and demand

side (demand response) will be only normal
 Renewables involve large uncertainty and,
meanwhile, promotes Ancillary Service Market

» Auction model with fast transaction for
dynamic operation and control



Power Demand-Supply Networks

Social Planer (Mechanism Designer)

U: Public Utility Commission
Ai: Agent (Consumer/Generator, Aggregator/Industry)

o ) o
1 |
— |Information Flow
— Power Flow

° o o Information Flow:
Power Flow obeys Ai e State information of agent
* Capacity constraint * Type information of
* Flow constraint agent’s dynamics and cost

e Environmental information

Conceptual lllustration of Power Demand-Supply Networks



Power Demand-Supply Networks

O Utility Dynamics (interaction model, balance model):
Xo = To(Xo, X Xy ) = o (%, X, X ) = 15(X)
0 Utility Performance : —1=(...,1-Li+1..,N)

JO (t, XO) :®IO (XO (T))d T > Evaluation over

(—|0 O) future time interval
“model predictive”

[ Agent Dynamics (generator, consumer, e.g., air conditioner ):

%=1, (Xi’%’ui) Type parameter of
O Private Utility/(-Cost): agent’s dynamics and cost

‘Ji(t1xi;&1ui) :®Ii(xi (7), M1ui(7))d7 (_Ii 2 O)



Elements and Framework of Auction

[EI Utility’s public (a prior, global) Information: J
(fO’ |0)1 (fi ( yi")’li('! yi"))’ yi €Y, 1=1...N
[d Agent i’s private (real-time, local) information: \
z,(7) =(x(7),y;(s), 7 <s<ty) For prediction of
O Action in auction: Bid: z (7) agent’s state trajectory
Pricing: P,(7,2) = 4 (%, (7),2,(7),..., (7))
Control: u;(7) =y,(z(7), pi(7,2))

Utility Bid Agent i
Zi

Auction based pricing
A (Xgr Zyyeen Zy) = P <

f.
X : >
0 Price Control
Utility Dynamics P u; =7.(z,p;) .

Agent Dynamics




Elements and Framework of Auction

[0 Market Clearing Condition (MCC) :

. Jo(ti %) = : Ittflo(xo(f))dTZK(Xo(t))

t, —t t, —t

Utility’s performance, Network constraints

[0 Hard-Constrained Market Clearing Price:
Shadow price of constrained social loss minimization

N
V7 (t,z)= max {ZJi(t,xi;yi,ui) | subject to MCC}
1=1

U=(uy,...uy) | <

p”(t,2) = oV a(t’ 2) Hard-constrained MCP
X




Elements and Framework of Auction

[ Soft-Constrained Market Clearing Price:
penalty

Shadow price of social welfare maximizatio

V'(t,2) = max W(tzu) (W i\]i)

u=(Uy,...,

oV (t, Z) _
Soft-constrained MCP = “MCP”

p(t,z) =

Remark

Each agent i’s control that maximizes the social welfare is
given by the decentralized calculation:

7/i*(xi’yi’ pl) :arg mu?X[pi fi(xi’yi’ui)+|i(xi’yi’ui)]

“decentralization by dual decomposition”



Elements and Framework of Auction

] Social Welfare Function:

N
WL, z;u) = Jo (L, %) + Z‘Ji(t’ Xi3 YirUy)
=L z(t) = (x(t), y(o),t < T <t,)
[d Agent i’s Profit Function:

IT.(t,z;u) =T (t,z;u) + J.(t, X.; ., U.)

1 Transfer Payment Function (Incentive, Tax, Subsidy) :
“Social planner designs transfer payment functions”

<0 Payment from Agent i to Utility

T,(t,z;u) {

>(0 Payment from Utility to Agent i



Remark

@dding 1 (State and Type parameter bidding) \

Agent bids z (t) = (x (t),y.(7),t <7 <t.)
-
Utility has a prior Information (assumption):

(f.Cyi ) LGyins)) ey,
so that utility can predict agents’ state trajectory

K x (7),t<7<t, /

Bidding 2 (State trajectory bidding)
Agent bids X (7),t <7 <t,
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Competition Models

Assumption: Transfer Payment Function is given as

T(tzu) = [ Iy (% (0))dz

N B Jo(t, %)= N T.(t, Zz;u)
(%) = ZIOi (%) ;

“Budget Balanced Transfer”

\ ¢

Agent i’s Profit Function is rewritten as

(8, z;u) = [ [l (%(2)) + 1, (x (), Y, () u, (2))]d 7

and, if utility chooses MCP p* = (pf, cery p:,) , is a so-called
“residual demand” type profit function.
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Competition Models

(A) Cournot-Nash Equilibrium (CE) Model
(B) Pure Competition (PC) Model
(C) Supply/Demand Function Equilibrium (SE) Model

(A) Cournot-Nash Equilibrium / (B) Pure Competition
T.(t,z;u) =0

Utility
minTT, (t,z;u,u"")
Ui
“Nash equilibrium” of
control (scheduling)

h

u. Agent i

maxIT.(t,z;u.,U_,)

uiCE :7/i*(zi’ piCE)

CE
P (t2) . ..
Assumption: Type parameter Y is fixed.

Open-loop Nash dynamic game 12



Competition Models

(A) Cournot-Nash Equilibrium (CE)
V(L 2) = maxTT; (t, z;u, US) =T1 (t, z;u™" ,usy)

VCE (t, z)
OX;

(B) Pure Competition (PC)
V.7 (t,2) = maxH (t,z;u,u"") =TI (t, z;u " ,u™)

8V "t z)
PC t 7)=
p(t,z)= ox

assuming that MCC is fulfilled (T, (t,z;u™) =0)

prE(t,2) =

13



Competition Models

(C) Supply/Demand Function Equilibrium (SE)

Utility e L (1) MCP
. - /
mlc::le(t,z,u) ﬁ[p (t,Z)] o
Social welfare maximum ) Strategic Bid
:‘v LT, (t’zi’zi’z—i)
P (t.2) =11 (t,7,Z ] Z,Z, p'(t,2)))
Utility @ Agent i

mZafo(t, 2,,2,,2°)

“Nash equilibrium” of
bidding

Nash dynamic game

maxTT;(t,z,2,Z )

uiSE = 7/i*(zi’ piSE)

14




Competition Models

(C) Supply/Demand Function Equilibrium (SE)
V> (t,z) = mzaxHT(t, z,2,2>°) =11 (t,z.,2>°,2°)
P (t,2) = pi*(lt, 2> (2))
U (1) =7 (z, (1), B (1, 2))
where pi*,j/i* are given by social welfare maximization:

p(t.2) =% (t_’z)

72 (6, i pi) =argmaxfp, 06, i, U) + 106, i, u)]

V'(t,z)= max W(t,z;u)

u=(Uy,...,uy )
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Competition Models

CE Model leads to a Nash equilibrium in space of controls
SE Model leads to a Nash equilibrium in space of bids

1. When do the equilibria exist ?
2. Is SE model superior to the CE model ?
e.g., in magnitude relations of

{W(t,z;u"),W(t,z;u™),W(t,z;u™)}
{IT.(t,z;u"),IT, (t, z;u""),IT. (t, z;u™> )}
Quick observation:
{W (t, Z;u") W (t, Z;u)I<W (L, z;u) SW (L, Z;u™)
{I1.(t,z;u"),IT. (t,Z;u“")}<TI.(t,z;u"™)
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Mechanism Design Models

IF transfer payment function T. (t,Z;U) is VCG Type,
e Optimal strategic bidding (Nash bidding equilibrium)
is “Truth Telling” Z =z : z, =argmaxIT (t,z,Z,z.)
e Budget balance is not assured. :
HT(L z,,Z,,2;)=11,(t,z,Z_; 7/*(Zi 25, p*(t’ Z)))

IF transfer payment function T.(t,Z;U) is AGV Type,

e Bayesian optimal strategic bidding (Bayesian Nash
bidding equilibrium) is “Truth Telling” Z=1z.

e Budget balance is assured.

These facts for a LQG setting were reported by Murao et al.
at CDC 2013, 2014.
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Conclusion

We have discussed elements and framework of the real-
time auction, and provided real-time auction models for
dynamic power networks based on model predictive control
and economics notions.

Challenges:

 Analysis and evaluation of real-time auctions from the
viewpoint of economics, e.g., quantification and
evaluation of market power in real-time auctions.

* Feasibility of numerical computation and mathematical
elaboration. (GMRES )

* Design of transfer payment functions by social planner in
competition models.
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JST-CREST-EMS Team:

Principle Design, Experimental Proof,
Implementation and Policy Recommendation
to Establish Energy Supply-demand Networks
based on Integration of Economic Models and

Physical Models

Principal Investigator: Kenko Uchida



Prof. Takanori IDA Kyoto U.

Demand Response; Field Experiment
Policy Recommendation

Prof. Kenko UCHIDA Waseda U. f\

Demand Response; Laboratory Experiment --,,-_
Economic Model, Market Mechanism ‘\?‘

Prof. Toshiyuki OHTSUKA Kyoto U.
Physical Model, Market Model

Real-time Algorithm for NMPC

Prof. Toru NAMERIKAWA Keio U.
Physical Model, Market Model
Decentralized Optimization

Prof. Yasumasa FUJISAKI Osaka U.

Quality of Energy Service
Reliability, Physical Model
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