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Towards a theory for understanding 
demand response: Some vignettes

◆  Modeling demand response as a dynamic 
system

◆  Price mediated stochastic optimal control
◆  Architecture for demand response with inertial 

thermal loads
◆  PMUs: From Big Data to low dimension
◆  Optimal operation of EV Charging Stations
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Modeling demand response as a 
dynamic system
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Investigating architecture …
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Demand response as a dynamic system
◆  Motivation: Close price loop around demand response

–  Data obtained from commercial and industrial loads in Texas
–  Model price responsive demand

◆  Differentiated response: Difference between moderate 
vs high prices

◆  Moderate prices – ARX model
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Demand response as a dynamic system: 
High prices

◆  More than 95th percentile of price = $144 $/MWh
–  High price rarely persists
–  Only 15 min spike
–  “Impulse response”

◆  Hammerstein system
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J. An, P. R. Kumar and Le Xie, “On Transfer Function Modeling of Price Responsive Demand: An Empirical Study,” To appear in
2015 IEEE Power & Energy Society General Meeting, Denver, July 26--30, 2015. 
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Price mediated stochastic optimal 
control
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How to optimize a decentralized 
stochastic system?

◆  Dynamic constraints: Ramping rates, delays, nonlinearities, ARX models, 
max charging rate, etc

◆  How to arrive at an optimal control solution when there are many 
generators, loads, prosumers, storage, all with dynamic constraints?

◆  Fundamental difficulty: Witsenhausen problem
–  Optimal solution is generally intractable
–  We don’t even know the systems involved
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Model
◆  The mathematical 

problem of Central Agent
◆  Maintain balance

◆  Maximize total utility

◆  Without the Central Agent 
knowing anything about 
any individual Agent’s 
dynamics or constraints or 
utilities or states, etc

.

.

.

    ?

    ?
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Price mediation and iteration
◆  Central Agent announces prices p(0), p(1), … , p(T)
◆  Each Agent n maximizes its own dynamic response

◆  Central Agent iterates the price sequence  
 
 
for k=1,2,…, until it converges
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Optimality results
◆  Deterministic system

–  Converges under some convexity assumptions
–  Solution it arrives at is optimal

◆  Stochastic system
–  Repeat the iteration process at each time instant

»  A la model predictive control
»  But proceed to convergence

–  Then converges to optimal solution for some systems:
–  For systems with common information about uncertainty
–  Even for some systems with independent information
–  But challenging for correlated information

Rahul Singh, Ke Ma, Anupam A. Thatte, P. R. Kumar and Le Xie, ``A Theory for the Economic Operation of a Smart Grid with 
Stochastic Renewables, Demand Response and Storage.’’ Submitted to Proceedings of 54th IEEE Conference on Decision and 
Control, December 15--18, 2015, Osaka, Japan. (Invited Paper).
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An architecture for demand response 
with inertial thermal loads
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An Architecture for Demand Response
◆  Goals

–  Maximize utilization of renewable energy
–  Minimize variability of power required
–  Respect comfort constraints of homes

◆  Architecture
–  How to achieve demand pooling?
–  Respect privacy: No intrusive sensing
–  Minimize communication requirements

»  Volume and latency of data

◆  Solution
–  “Optimal” – efficient in some sense
–  Computationally tractable for large number of homes
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Load aggregator

 

Load 
aggregator 

Comfort zone

min, , [ ( ), ( )]maxΘ Θi it t

   Total Power

           Price
1

i

N



15/44

©  April 21, 2015,  P.  R. Kumar 

Thermostatic control with set points Zi
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Problem: Synchronization of demand response

◆  Optimal solution: All users behave alike  

◆  Loads synchronize and  move in lock-step  

◆  Robustness problem: Suppose users 
change comfort level settings at same time

–  Super bowl Sundays @ game time  

◆  Demand suddenly rises, causing large  
peak in nonrenewable power required

–  Model cost as lim ( )
T

nT

T
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Staggered set-points
◆  De-synchronize load behaviors
◆  Choose different set-points                       for 

different loads
(Z1, Z2, ..., ZN )

t0

Z1

Z2

Z3
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Stochastic optimization problem 
for 

◆  Stochastic wind process:
◆  Temperature dynamics:

◆  Comfort specification:

◆  Robustness model:

◆  Set-point control:

◆  Cost:
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The optimization problem for a 
finite number of loads

◆  Minimize

◆  Subject to

◆  Difficult
–  High dimensional when N is large
–  Complex
–  Need to solve different problems for different N’s

0  Z1  Z2...  ZN  ⇥2

C Z ZN
N( , , ) ( ( )1

2
… = × +∑ Power level) Prob Power level γNN Expected Discomfort∑
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Continuum limit as 

◆  Solution
–  Study asymptotic limit as 
–  Consider Set of loads = [0,1]

–  Can solve using analytical methods 
»  Pontryagin Minimum Principle 

–  Solution is explicit!

–  Also asymptotic solution is also nearly optimal even for 
small N!

–  Essentially this solves the problem for all N’s

N ! 1.

N ! 1.
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Solving for finite N: 
Approximation to continuum limit

◆  We can generate              according to continuum limit 
distribution, to approximate finite optimal distribution

◆  Can be implemented in a privacy respecting manner
◆  Similar schemes to have different QoS contracts of 

users, with minimal knowledge
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Gaurav Sharma, Le Xie and P. R. Kumar, “Large population optimal demand response for thermostatically controlled inertial loads.” 
Proceedings of IEEE International Conference on Smart Grid Communications (IEEE SmartGridComm), pp. 259--264, October 
21--24, 2013, Vancouver.
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PMUs: From Big Data to low 
dimension and early event detection
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Integrating PMUs: Dimensionality reduction 
of big data for early event detection

◆  About	
  1000	
  PMUs	
  in	
  USA,	
  1700	
  in	
  China	
  
◆  TVAs	
  120	
  PMUs	
  produce	
  36GB	
  data	
  per	
  day	
  
◆  Significant	
  dimensionality	
  reducFon	
  

possible	
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  Kumar,	
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(a) Cumulative Variance for Bus Frequency ω in Texas Data
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(b) Cumulative Variance for Voltage Magnitude Vm in Texas Data
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(a) Cumulative Variance for Bus Frequency ω in 20130728 Oscillation Data
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Corporate PDC Data
Storage
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Yang Chen, Le Xie and P. R. Kumar, “Dimensionality Reduction and Event Early Detection Using Online Synchrophasor Data.” IEEE 
Power and Energy Society General Meeting (PES), pp. 1--5, Vancouver, British Columbia, Canada, July 21-25, 2013.
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Case Study: Texas Unit Tripping	
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(a) ω4 Profile During Unit Tripping Events
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(b) Zoomed-in ω4 Profile 
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Yang Chen, Le Xie and P. R. Kumar, “Dimensionality Reduction and Event Early Detection Using Online Synchrophasor Data.” IEEE 
Power and Energy Society General Meeting (PES), pp. 1--5, Vancouver, British Columbia, Canada, July 21-25, 2013.
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Optimal operation of EV Charging 
Stations
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EV Charging Stations: Layered Architecture 
Based on Time Scale Decomposition

Ke Ma, Le Xie and P. R. Kumar, “A Layered Architecture for EV Charging Stations Based on Time Scale Decomposition.” IEEE 
SmartGridComm, pp. 680—685, November 3-6, 2014, Venice, Italy.
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Thank you


