### 2015 JST-NSF-DFG-RCN Workshop on Distributed Energy Management Systems





Determination Method of Voltage Control Parameters Based on Input-output Relationship Database in Distribution System

Mr. Shinya Yoshizawa (Waseda University)

# **Background and objective**

## Difficulty of voltage control

- The number of photovoltaic (PV) generation is increasing
- Voltage rise and fluctuation problems
- Diversification in consumption behavior and weather variation

### Advanced voltage management methodology

- Voltage control parameter of voltage regulator is determined and updated every one hour
- For control parameter determination, Input-output relationship database is used

# Flow of proposed approach

#### Forecast

Energy demand and PV output profiles are forecasted by Just-in-Time modeling and *k*-Nearest Neighbor approach.

### **Operational plan**

Appropriate voltage control parameter is determined by using an input-output relationship database.

#### Voltage control

Voltage regulator automatically operates according to the determined control parameter

## **Determination approach for voltage control parameters**

#### Input data

Parameter candidates is selected from DB

#### Output data



## **Simulation conditions**

- **Results and discussion**
- Actual Japanese 6.6-kV distribution system model
  ✓ Total load capacity : 2971 kVA
- Proposed voltage control approach reduces the amount of

- ✓ Number of 6.6-kV (MV) customers : 14
- ✓ Number of LV-customers with PV : 479
- Simulation conditions
  - ✓ Data retention period in DB: 01/01/2007 ~ 12/31/2007
  - ✓ Evaluation period : 01/01/2008 ~ 01/31/2008

voltage violation and curtailed PV output without increasing the average number of tap operations







|                     | Average number of<br>tap operations |      | Average amount of voltage violation |
|---------------------|-------------------------------------|------|-------------------------------------|
|                     | OLTC                                | SVR  | [V·s]                               |
| Conventional method | 3.93                                | 3.00 | 43.5 × 10 <sup>3</sup>              |
| Proposed method     | 3.20                                | 4.93 | 0.179                               |