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Residential Demand Forecast 4

Residential demand forecast is nhecessary for :

« Determining operational planning of residential energy appliances (from HEM perspective)
« Determining operation parameter of voltage controllers (from GEM perspective)

Uncertainty in forecast result
» Forecast error in peak demand
» Forecast error in peak hour
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Schematic image of demand forecast for operational planning of residential energy appliances

» Forecast error causes inefficient operational planning for energy appliances.
« We have to handle uncertainty in forecast for optimal planning.




How Do We Handle Uncertainty in Demand Forecast? 5

Multiple scenario forecast

« Handling uncertainty in forecast by providing several plausible future demand
curves under current condition (context).

e Suitable for :

» Scenario-based stochastic optimization in operational planning of residential

energy appliances

» Robust parameter determination of voltage controllers on distribution
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An example of multiple scenario forecast

Several utilization results were already presented
from our team in yesterday’s poster session.

2015 JST-NSF-DFG-RCN Workshop on Distributed Energy Management Systems # S5O ACROSS
Evaluation of Stochastic Optimization of Operational Planning Scheme
for Residential Energy Systems
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Based on Input-output Relationship Database in Distribution System
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Multiple Scenario Forecast Based on K-Nearest Neighbor 6

Basic idea

» Extracting plausible load curves (outputs) under
similar contexts (inputs) from the database
according to the K-nearest neighbor (K-NN)

00:00 04:00 08:00 12:00 16:00 20:00
framework. time

Multiple Scenario forecast
K-NNs enables us to obtain multiple candidates of ‘¥q by selecting
neighbors qu of @from database which stores {@ , @}fil

Y

Humid. ’

Prediction procedure

@ Input @ to DB, and select neighbors qu_

@ Relate to counterparts @), i€ N;" e
@ Output {#,}.cras prediction candidates.

Input (current context)
Load curves of last N days
Weather forecast results

Data base
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Output (forecasted results)
A set of daily load curves
» Energy load
» Thermal load

Schematic image of load forecast based on K-Nearest Neighbor JIT (Just-In-Time) modeling

Providing plausible future load curves
« Extracting a set of outputs caused under similar contexts.
» How should we define appropriate similarity between contexts?




Distance Metric Learning for Multiple Scenario Forecast
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Problem in K-NN based forecast approach

Zq, {Tntnenx=(378)

« Discordance between K-
NNs in input data space
and those in output data

Space.
» K-NNs of current context do
NOT indicate K-NNs of the
actual realization.
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Distance metric learning for K-NN forecast [Fujimoto+ 2014]

Input Data Space

Naive implementation of K-NN
(ex. Euclidean distance)

N =1{3,7,8}

« Learning appropriate distance metric in input L
data space by using the given distance metric

in output data space to obtain concordant K-

NNSs. -

* Focusing on a class of generalized
Mahalanobis distance between two vectors.

Appropriate distance metric for measuring input
sequences can be derived according to ordinary least
square framework by only using simple linear algebra.

Output Data Space

N\

Learning distance metric to
obtain corresponding K-NNs.

I-NNS in output data space
q




Local Distance Metric Learning for Forecast 8

Local distance metric learning for multiple scenario forecast:
[Fujimoto+2014]

Algorithm 1 Local Distance Metric Learning

» Providing flexible and appropriate distance metric

fOI’ eaCh |nput Input: n, D, &, K, Iax.
M© 1.
for i =0 to I, do
« Improving discordance between K-NNs in input k) {ie N a0a) < mas a0}
data space and those in output data space. Dy = {(@nm, Y, )im € N¥ (@ K[, d¥ (ML)},
Estimate M SH) by using D,, based on RML.
end for
R H . . . i< ar minerg g Kg)
. Prowdl_ng context-oriented plausible m_ultlple AL fMg,{v /
scenario forecast based on context-oriented Output: M,

distance metric.

Naive K-NN implementation Global metric learning Local metric learning
based on Euclidean distance for K-NN forecast for K-NN forecast
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Purpose:

« Evaluation of appropriateness of proposed forecast scheme from
the view point of selection accuracy of the K-NNs
» Cardinality of intersection between K-NNs in input and output spaces.
NE NN
min(JNG¥[, IVZ[)’

Simpson coefficient SC, =

« Comparing the following multiple scenario forecast frameworks:
» Naive K-NN implementation based on the Euclidean distance (EUC)
» K-NN based on the regression based global distance metric learning (RML)
» K-NN based on the regression based local distance metric learning (RLML)

Experimental setup:
* Input
» Load curve of previous day (15min., 96-dim.)
> Weather forecast of next day (1hour, 24-dim. 9vars). | .-
v' Temperature, humidity, ...

* OUtpUt _ _ An example of input query (current context)
» Load curve of next day (15min., 96-dim.)

* Other setups
» Number of samples: 450 days of input-output pairs in DB.
» K:10, 20, 30
» Distance metric for output space: Euclidean distance.
» Targeted load: total load of 550 houses

00:00 04:00 08:00 12:00 16:00 20:00

An example of output target (realization)



Results: K-NN Selection Accuracy 10
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Results of Simpson coefficients

« Our proposed framework improves accuracy in selection of the actual K-NNs of
the realizations under various K by using distance metric learning.
» Local distance metric learning improves selection accuracy.




A Result of Multiple Scenario Forecast
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K-NNs in output space
* |deal scenarios

JndL

Simpson coefficient: 1.0

Conventional naive approach
» Forecasted scenarios w/o
metric learning [EUC]

Demand
N3

Simpson coefficient: 0.1

Proposed approach
 Forecasted scenarios based

on local metric learning
[RLML]

T

Simpson coefficient: 0.8

Forecasted load curves based on our method adequately represent the plausible
candidates which can occur under current context.
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We proposed a multiple scenario demand forecast framework.

« Providing multiple load curves for representing uncertainty.

« Selecting plausible candidates based on the learned distance metric.
« Improving forecast accuracy based on the local metric learning.

Accurate forecast for what?
« We evaluated our method only in terms of forecasting accuracy.
» The appropriateness and the impact of forecasting uncertainty should be
evaluated in the context of energy management.

U

» Effectiveness of our approach is being verified from the viewpoint of the EMS.
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