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Problem:

• Large generation and 
load centers separated 
by long transmission 
corridors can develop 
inter-area oscillations

• Poorly damped inter-
area oscillations 
jeopardize grid stability 
and can lead to 
widespread outages 
during high demand

• To prevent this, utilities 
constrain power flows 
well below transmission 
ratings  inefficient

Solution:

• Construct closed-loop 
feedback signal using 
real-time PMU (Phasor 
Measurement Unit) data:      
1st demonstration of this 
in North America

• Modulate power flow on 
PDCI (Pacific DC Intertie)
up to +/- 125 MW

• Implement a supervisory 
system to ensure “Do No 
Harm” to grid and 
monitor damping 
effectiveness

Benefits:

• Improved grid reliability

• Additional contingency for 
stressed grid conditions

• Avoided costs from a 
system-wide blackout    
(>> $1B)

• Reduced or postponed 
need for new transmission 
capacity: $1M–$10M/mile

• Helps meet growing 
demand by enabling 
higher power flows on 
congested corridors

Damping Controller Overview
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Inter-Area Oscillations Jeopardize Grid Stability

Western Power System Breakup on August 10, 1996

5



Project Background

▪ Based on 1970s BPA experiments on PDCI 

later shown to have destabilized BC-US mode

▪ Revived in 2007 – 2012 by BPA with Montana 

Tech leveraging PMU deployments in WECC

▪ Current project launched in June 2013 as a 

collaboration of SNL, MT, BPA, and DOE to 

develop and demonstrate damping control

▪ Phase 1 (June 2013 – Sept 2015)

• Controller design based on extensive 

simulation studies & eigensystem analysis

• Open-loop tests – study PMU data quality

▪ Phase 2 (Oct 2015 – Sept 2017)

• System install at Celilo in The Dalles, OR

• Closed-loop demonstration on Western 

Interconnection using modulation of PDCI

• Documentation and publishing of results; 

engagement of power systems community

▪ Phase 3 (Oct 2017 and beyond)

• Conduct longer-term tests

• Study transient stability potential

• Assess impacts with DC side

• Explore other sources of actuation
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Damping Controller Overview
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PMUs send data packets over network

Packets arrive at damping controller

Controller sends power command to PDCI

PDCI injects power command into grid

Damping Controller Strategy
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𝑷𝒄𝒐𝒎𝒎𝒂𝒏𝒅 𝒕 = 𝑲 𝒇𝑵𝒐𝒓𝒕𝒉 𝒕 − 𝝉𝒅𝟏 − 𝒇𝑺𝒐𝒖𝒕𝒉 𝒕 − 𝝉𝒅𝟐

𝑲 is a constant gain with units of MW/mHz

Real-time PMU 

feedback

is the key to 

stable control



Controller Employs Diversity 

and Redundancy in Feedback
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• Diversity = Geographical Robustness

• Redundancy = Site Measurement Robustness

• Controller evaluates 16 feedback pairs every update cycle 

to provide options due to any network issues

• Controller seamlessly switches between feedback pairs 

to avoid injecting step functions into the system



Design was driven by the need to detect and respond to certain 

system conditions in real-time as well as asynchronous 

monitoring functions at slower than real time
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Watchdog circuit module

Real-time 
Control platform

Server for select 
supervisory functions
(“Do No Harm”)

Damping Controller Hardware
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Grid Demonstrations Showed Significant 

Improvements in Damping with Controller Operational
Experiments conducted at Celilo Converter Station in Sept 2016

Repeated (confirming initial results) in May/June 2017 and May/June 2018

Chief 

Joseph 

brake 

test 

Damping of North-South 

B Mode improved 4.5 

percentage points 

(11.5% to 16.0%) in 

closed-loop vs. open-

loop operation.

Square 

wave 

pulse 

test

Damping controller 

significantly reduces 

amplitude of North-

South B mode 

oscillations in 15 

seconds vs. 23 seconds 

in open-loop tests for 

the same reduction.

All 

tests

Controller consistently 

improves damping and 

does no harm to grid. 

Chief Joseph 
Brake Pulse 

applied

Faster 
damping of 
oscillations

Reduction in 
overshoot
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Latest Tests Confirm 2016-2017 Test Results
(Tests conducted at Celilo on May 23, 2018)

Generator drop in south

unrelated to testing

Gain = 9 MW/mHz 

Damping improved by 

4.5 percentage points 

(10.0% to 14.5%)

Gain = 15 MW/mHz 

Damping improved by 6 

percentage points 

(10.0% to 16.0%)

Chief Joseph brake test

Chief Joseph brake test
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Gain Tuning was Informed by Square Wave Pulses
(Tests conducted at Celilo on May 23, 2018)

Lower gains  less damping improvement

Higher gains  more “ringing” on the DC side

Sweet spot  K = 12 to 15 MW/mHz



May 16, 2017 Tests, 0.4 Hz Forced Oscillation

15



16

Events on the DC Side Provide a Good Basis 

of Comparison for Controller Performance

Two very similar 

events are captured.  

May 6 – controller 

was not connected.

June 11 – controller 

was in closed-loop 

operation.

This plot zooms in 

on the y-axis to 

show controller 

modulation (June 11 

curve).
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Damping controller performs as expected in 

response to a trip on the DC side



time
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Control 

Processing 
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Command 
Delay
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PMUs take

measurements

PMUs send

data packets

Packets

arrive at

controller

Controller

dispatches

command PDCI acts

Communication and Delays

Name Mean Range Note

PMU 

Delay
44 40 – 48

Dependent on PMU settings. 

Normal distribution.

Communication 

Delay
16 15 – 40 Heavy tail

Control 

Processing 

Delay

11 2 – 17

Normal around 9 ms, but a peak 

at 16 ms due to control windows 

when no data arrives (inconsistent 

data arrival)

Command 

Delay
11 11 Tests were consistent, fixed 11 ms

Effective Delay 82 69 – 113 Total delay

Total time delays are well within our tolerances (<< 150 ms)
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PMU Data Considerations

• PMUs have inconsistent interpacket delays
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• Delay inconsistency also affects the power command

Delay inconsistency 

affects frequency 

estimation

Ideal case
Delay inconsistency 

with NO time alignment

Delay inconsistency 

with time alignment



PMU Data Considerations

• Time alignment

- The North and South 

measurements need to have 

the same PMU timestamp

- Supervisory system time 

aligns the data

- If data is too far apart, the 

control instance is disabled

• Other PMU data issues

- Data dropout:

Supervisory system catches 

data dropouts and disables 

that controller instance

- Corrupted data:

Supervisory system flags 

irregular data (e.g. repeated 

values, missing time stamps)
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Advantages:

• Robust to single points of failure

• Controllability of multiple modes

• Size/location of a single site not 

critical as more distributed energy 

resources are deployed on grid

• With 10s of sites engaged, single 

site power capability ≈ 1 MW can 

provide improved damping

• Control signal is energy neutral 

and short in time duration  sites 

can perform other applications

Damping Control Using Distributed 

Energy Resources
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Example using Distributed Energy Storage

▪ Total real power capacity on order of 20 – 50 MW is sufficient

▪ With 10s of sites deployed, individual resource capacity ≤ 1 MW will work
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Damping Control Using Wind Turbines
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• PDCI damping controller was modified to modulate the torque 

command of a wind turbine at Sandia wind facility (SWiFT)

• Actuator (wind turbine) is remote – not co-located with the controller

• Communication channel used the public internet
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Key Takeaways from Project

• First successful demonstration of wide-area control using real-time 

PMU feedback in North America  much knowledge gained for 

networked control systems

• Control design is actuator agnostic  easily adaptable to other 

sources of power injection (e.g., wind turbines, energy storage)

• Supervisory system architecture and design can be applied to 

future real-time grid control systems to ensure “Do No Harm”

• Algorithms, models, and simulations to support implementation of 

control strategies using distributed grid assets

• Extensive eigensystem analysis and visualization tools to support 

simulation studies and analysis of test results

• Model development and validation for multiple levels of fidelity to 

support analysis, design, and simulation studies
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Project Recognition

• First successful demonstration of wide-area control using 

real-time PMU feedback in North America

• 2017 R&D 100 Award

• 19 published papers (17 conference papers, 2 journal papers, 

several more journal papers in review process)

• US Patent application filed March 2018

• Commercialization of DCON being pursued jointly with BPA
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Current Status

• We are teaming with a software firm to “harden” the software 

to be operational in a substation environment

• We are leveraging the actuator “agnosticism” to widen the 

potential commercial market beyond the initial high voltage 

DC application with BPA

• We are enabling the “modularization” of the damping 

controller to be easily adaptable to other environments 

(energy storage, wind, large PV plants, etc.)

• Interested vendors include ABB and Schweitzer Engineering 

Labs
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Future Research Recommendations

➢ Control designs to improve transient stability and voltage stability 

on transmission grids

➢ Assessment & mitigation of forced oscillations on transmission 

grids (both AC and HVDC)

➢ Enhancements to improve resilience of transmission grids

• Design of control architectures that are more robust to single 

points of failure (e.g. decentralized control)

• Control designs that leverage large #’s of distributed assets (e.g. 

power sources, measurement systems) to improve performance 

and reliability of transmission grids

➢ Analytics to improve transmission reliability

• Real-time PMU data represents an enormous amount of data:

How does one manage this amount of data?

How can one leverage the data for key information?

Potential techniques include machine learning
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