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Unbalance in Resources and Load

Resource

 76% of coal in North and Northwest

 80% of hydropower in Southwest, mainly in

upper stream of Yangtze River

 All inland wind in Northwest

 Solar resources mainly in Northwest

Load

 70%+ of load in Central and Eastern parts

Transmission

 Distances between resource and load center

reaches up to 2000+km

 UHVDC and UHVAC are good options to

transfer huge amount of power over long

distance

Challenges

 Hybrid operation of AC and DC systems

 System stability, security, and reliability
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Fig. West to east power transmission

Fig. China power transmission framework
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Developmental Trend: Source-Grid-Load Interaction

The existing load control methods are of low 
granularity, and the load response is slow.

The load monitoring/control is highly dependent 
on the SCADA network and it costs much to 
extend to end-user level.

It is urgent to develop cost-effective methods to 
integrate higher levels of renewable generation. 

UHVDC/UHVAC/HVDC/HVAC

development in China

UHVDC Fault Caused Outage in Brazil

G. Wen, G. Hu, J. Hu, X. Shi and G. Chen, "Frequency Regulation of Source-Grid-Load Systems: A Compound Control Strategy," in IEEE 

Transactions on Industrial Informatics, vol. 12, no. 1, pp. 69-78, Feb. 2016.

Source-Grid-load interaction proposed by SGCC Jiangsu

Source Grid Load

Technical aspect: Holistic generation-
transmission-demand coordination

Market aspect: real-time pricing, incentives, etc

Conventional 
generation

Pumped-
storage

Renewable 
generation

Battery energy 
storage

Conventional load

Energy storage

EV/PHEV

Power electronics 
interfaced load



Developmental Trend: Internet-of-Things (IoT)

• Advanced metering infrastructure (AMI)

• SCADA (supervisory control and data acquisition)

• Smart inverters

• Remote control operation of energy consuming devices

• Various type of interconnected sensors

Pic from: https://www.valuecoders.com/blog/technology-and-apps/11-mobile-app-development-trends-stay-2017/

https://www.valuecoders.com/blog/technology-and-apps/11-mobile-app-development-trends-stay-2017/


Developmental Trend: Energy Internet (Interconnection)
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Pic from: https://www.economist.com/technology-quarterly/2004/03/13/building-the-energy-internet

https://www.economist.com/technology-quarterly/2004/03/13/building-the-energy-internet


Challenges

 Increasing dynamics and stochastics. 

 Traditional operational rules and 

procedures, which are derived from offline 

studies or historical experiences, tend to be 

less optimal (over-conservative or risky).

 Limited capabilities to adapt to various, 

including unknown, system operating 

conditions.

 Causes 

• Increasing penetration of DERs

• Transportation electrification 

• Fast demand responses

• New market behaviors

• Inaccurate grid models

Opportunities

 The need for faster and enhanced system 
situational awareness tools/platforms.

• WAMS with good coverage of PMUs

• Point-on-wave measurements/devices

• Progress in computation/simulation

• Recent progress in AI (Deep learning)

 The need for faster, preferably real-time, 

decision-support tools/platforms.
• Most existing operational rules are offline 

determined considering the worst-case 

scenarios

• Lack of preventive/corrective measures to 

mitigate operational risks

• Proven capability of AI in decision 

making/support under highly complexed 

situations.

Known Challenges and Opportunities

Lack of approaches to collect and synthesize overwhelming amounts of data from

millions of smart sensors nationwide to make timely decisions on how to best

allocate energy resources.



9

Traditional Approach
(Model-centric)

Automatic Program
(Fixed and pre-determined rules, 

automatic execution)

New Approach
(Data-centric, hybrid approaches)

Autonomous Program
(Intelligent and evolving)

Rules

Data

Answers Data

Answers

Rules

Changes in Way of Thinking
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Dec. 2018, AlphaStar mastered the real-time 

strategy game StarCraft II and beat top teams, 

by learning from human and then self play.

Robot arms learn to pick things up, 

hard and soft objects in different ways, 

with little human interference.

Oct. 2017,《Nature》, AlphaGo Zero beat

AlphaGo Lee with a score of 100:0, after 3

days’ training by learning from scratch.

Notes:
• No/limited labeled data (raw data input), play against itself for improvement.

• Learn from human, and then play against itself for improvement.

Hints for power system applications：

• Lack of large amount of labeled data, especially event data.

• Generate reasonable data sets based on existing/typical data/operating conditions.

• Combine AI with classical power system theories/computations/metrics.

Core technologies: Deep learning + Reinforcement learning

2010 2014 20182015-2017

Deep Mind Founded
Google acquired

Deep Mind

2015, AlphaGoFan (5:0 vs Hui Fan)

2016, AlphaGoLee (4:1 vs Lee Sedol) 

2017, AlphaGoMaster (3:0 Jie Ke)

2019

2017, AlphaZero

2018, AlphaStar
2019, MuZero

The New-gen. AI Technologies

Credit of pics: Google



Deep Learning

Supervised 
Learning

In                 Out

error
target

labeled 
data

Application

 Classification

 Predict a target 

numeric value

Common Algorithms

o k-Nearest Neighbors

o Linear Regression

o Logistic Regression

o Decision Trees

o Naïve Bayes

o Support Vector Machine 

(SVM)

o Neural Networks

Unsupervised 
Learning

unlabeled 
data

Application

 Clustering

 Visualization

 Dimensionality reduction

 Anomaly detection

Common Algorithms

o k-Means

o Hierarchical Cluster Analysis

o Principal Component 

Analysis

o DBSCAN

o Local Outlier Factor (LOF)

o Autoencoders

o Deep Belief Nets

o Ganerative Adversarial 

Networks

In                 Out In                 Out

reward 

& state

environment

Reinforcement 
Learning

Application

 DeepMind’s AlphaGo

 AlphaZero

 AlphaStar

 Fire-extinguish robots

Common Algorithms

o Dynamic programming

o Monte Carlo

o Q-Learning

o SARSA

o Deep Q Network (DQN)

o Asynchronous Actor-Critic 

Agent (A3C)

o Deep Deterministic Policy 

Gradient (DDPG)

Semi-supervised 
Learning

many unlabeled & 
few labeled data

Application

 Google Photos

Webpage classification

Common Algorithms

o Combination of 

unsupervised and 

supervised learning

In                 Out

Deep Learning is part of the 
machine learning family based 

on artificial neural network with 
many layers. Deep learning can 

be supervised, unsupervised 
and semi-supervised.

11

DRL= DL + RL



Goal: To develop a platform and tools that can transform massive amount of 

measurements into actionable decisions in real time.

The Grid Mind Vision

• Grid Mind: A measurement-driven, grid-interactive, self-evolving, and open platform 
for power system autonomous dispatch and control.

 In the short term, create EXAMPLES of AlphaZero in power systems.

 In the mid-term, Grid Mind serves as an assistant to grid operators.

 In the long term, Grid Mind will be the core of power system operation ROBOT. 

Power SystemsPMUs

Synchrophasor 

measurements

Perception Comprehension Projection

Situational Awareness

Decision Action

Now

Goal / Future

Power Systems

ActionGrid Eye Grid Mind

SCADA

WAMS

Situational 

awareness
Decision making

Linear/hybrid 

SE

Grid States

Operator 

experience

Offline training 

using HPC

Reinforcement/

feedback

Execute in sub-second

Image, 

Video, text, 

etc.
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Autonomous Voltage Control (AVC) on IEEE 14-Bus System

Either no violations 

or one action taken

Two actions taken

R
ew

ar
d

Episode

Four actions taken

Five actions taken

60%-120% random 

system load changes

States – Bus Voltage (Episode 8 and 5000)

Actions – Vset (Episode 8 and 5000)

Three actions taken

13



AVC: DQN and DDPG Agents for Illinois 200-bus System

Regional voltage control is 

considered for DQN agent:

5 adjacent generators with 30 

interconnected buses in the 

neighborhood subsystem

60%-120% random load changes are applied to each episode

After 10,000 episodes’ learning, the designed DRL agents start to master the voltage control problem in 

the 200-bus system by making decisions autonomously.

Training Testing

No violation or one 

iteration step

Two iteration steps

Three iteration steps

Four iteration steps

More than five 

iteration steps

Training Testing

DQN Agent

DDPG Agent

Episodes

E
p

is
o

d
es

 R
ew

a
rd

s
E

p
is

o
d
es

 R
ew

a
rd

s

No violation or one 

iteration step

Two iteration steps

Three iteration steps

Four iteration steps

More than five 

iteration steps

14*The Illinois 200-bus system model is from https://egriddata.org/dataset/illinois-200-bus-system-activsg200

https://egriddata.org/dataset/illinois-200-bus-system-activsg200


Further Testing-200 Bus System with Random N-1
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• Test the DRL agent under different loading conditions: heavily loaded, fully loaded, 

and lightly loaded. 

• Consider different topological changes. For example, random line tripping 

contingency or N-1 conditions.

DQN; 60%-140%; Enforcing Q limitDDPG; 60%-140; Enforcing Q limit

3 iteration steps

4 iteration steps

More than 5 

iteration steps

2 iteration steps

x104 x104

Either no violation 

or 1 iteration step

Episode Episode

Observations:
1. With little human interference, the designed agents work very well under all testing 

conditions. 

2. The results comply with basic power system principles and engineering judgement very 

well.

3. The proposed framework is promising for power system autonomous operation and control.



Demo

16

Step 1: Perturb the system Step 2: Check for voltage violations

Step 3: Run Grid MindStep 4: See the results

Check the following links for the demo: https://geirina.net/assets/pdf/GridMindDemo_JD4.mp4
https://geirina.net/assets/pdf/JiangsuDemo.mp4

https://geirina.net/assets/pdf/GridMindDemo_JD4.mp4
https://geirina.net/assets/pdf/JiangsuDemo.mp4


Deployment of Grid Mind at Jiangsu Grid

17

220kV and 
Above at 
ZhangJiaGang



Two Pilot Projects at ZhangJiaGang and NingBei of Jiangsu

 45 substations and power plants

 12 generators

 3 500kV substations

 37 220kV substations

 ~100 T-lines

 50 buses

 Max load 3500MW

 Max gen. 5800MVA 61



Interface with Existing EMS and Data Flows



Pre-deployment Training and Testing
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 Generate Reasonable Data Sets based on Existing Data

• Perturb the following data files 2019-07-30-10-00， 2019-07-30-13-00， 2019-07-30-15-00， 2019-
07-30-17-00， 2019-07-31-13-00 (of entire Jiangsu Grid)，by changing its load between 80%-120%，
with N-1 and N-1-1

• Generate a total of 24000 system snap shots，use 12,000 of them as the training data and the rest for 
testing

 Control Objectives

• Bus voltages of 220kV and above stay within range

• 220kV-and-above lines should not be overloaded

• Reduce the loss for all lines at 220kV and above

 Testing Results are shown in the table

No. of 
Iterations

No. of Cases Percentage

(%)

1 11670 97.25

2 90 0.75

3 19 0.16

4 8 0.067

5 5 0.042

6 3 0.025

7 3 0.025

8 1 0.0083

10 1 0.0083

20 200 1.67

Offline training & online execution：

Train the AI agent from scratch offline to 

“college” level, the agent has to learn itself in 

the online environment to “graduate”

Possible causes (needs further investigation)：
1）Unreasonable data set（random load perturbation was 
considered)

2）Action space can be enlarged（shunts and Xfrm taps）

3）The case itself is difficult to solve (potential byproduct 
critical snapshot identification)

Summary of Results

 Success rate in term of voltage control: 99.9917% 
(for only one case, voltage issue got relieved but not 
completely solved, 1/12000）

 Success rate in term of line flow control：100%

 Success rate in term of loss reduction：98.33%，
averaged loss reduction at 1.27%



During online 
training, 571 
snapshots have 
violations, all 
solved by AI agent

During online 
execution, 239 
snapshots have 
violations, all 
solved by AI agent

Nov. 22, 2019 Nov. 29, 2019

Reward function：positive if violations in Vs and Flows are solved; negative otherwise；the more loss it 
reduces, the higher the reward

Online Deployment with REAL Data

21

R
ew

ar
d

R
ew

ar
d

Online training process

Online execution

No. of Snapshots

No. of Snapshots

During online training，after ~200 snapshots, AI agent start to converge, and continue to evolve afterwards;

During online execution，all cases are solved, validated by the EMS (D5000);

For all cases, voltage and line flow violations are solved, with an average reduction in system loss of 3.87%。



Training period:
average loss 
reduction：3.4525%

Execution period: 
average loss 
reduction：3.8747%

Voltage violations 
solved, loss 
increases slightly

Observations: validated by the EMS

1）following the decisions of the AI agent, all voltage violations are solved；
2）for one snapshot, voltage violations are solved, loss slightly increases;
3）other than the one case, loss reductions are observed, with highest number reaching ~6%;
4）for all snapshots, before and after control, no violation in flow is observed。

Nov. 22, 2019 Nov. 29, 2019

Online training process

Online execution

No. of Snapshots

No. of Snapshots

R
e

w
ar

d
R

ew
ar

d



在线系统试运行Display of one event (screen shots from one video)...
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 Performance

 Computation time

Problem solved 
after taking the 
suggestion from 
AI agent

Voltage violations at two Substations Actions suggested

Decision 

takes 2.2 

ms



Deployment at NingBei

 Objective：to relieve the high-voltage problem during the Spring Festival and national 

holidays

 Special operating conditions

 Close to HVDC terminal station

 Forecasted load of Jiangsu Grid during this period drops to 1/3 of peak load 

(~33,500MW)

 One transformer being maintained, 4x60MVar shunt reactors offline

 Multiple generators operates in under-excitation mode with negative Q 

NingBei Area



Results
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Jan. 1, 2020-Feb. 12, 2020, a total of 10919 snapshots

Training, before Spring 
Festival (SF)

Execution, 
during/after SF

No. of Snapshots

R
ew

ar
d

• Training：2864 
snapshots with 
violations

• Execution/testing：
707 snapshots with 
violations

• 100% success rate



Bus Voltages
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220kV-and-above
buses

500kV-and-
above buses

SanChaWan 220kV QiuTengBian 220kV

NingHua Thermal Plant NanRe Power Plant

QiuTengBian 500kV SanChaWanBian 500kV

 before
 after



Real Time Optimal Topology Control (L2RPN)
-- Problem Formulation
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• Time-Series Optimal Control through Topology Adjustment

• Input Data

Obj. Min/Max (Objective)
s.t. Constraint_1

Constraint_2
Constraint_3
…

Constraint_i
Constraint_j
…

• Decision Variables

Optimization problem:
Goal: Maximize the remaining power transfer capability of the 

entire system (all lines) over all time steps for all scenarios 

Single-timestep 
Constraints

Multi-timestep 
Constraints

Transfer Capability at a Time Step:

Transfer Capability for one Scenario:

Transfer Capability of All Scenarios:

Step_single_line_margin = Max(0, 1-Flow/ThermalLimit)**2)
Step_single_line_score = 1 – (1-Step_singel_line_margin)**2
Step_total_score = Sum(Step_single_line_score) over lines

Scenario_Score =  0, if  Game Over (when certain constraints are violated
= Sum(Step_total_score) over all timesteps, otherwise

Total_score = Sum(Scenario_Score) over all scenarios

Line Switching On/Off 

(20 lines)

Node Splitting/Rejoining

(156 for 14 nodes) 

Bus1 Bus2
Bus1

Bus2

Bus1-2

Bus2
Bus1-1

Bus1-2
Bus2

Bus1-1

Bus1-2
Bus2

Bus1-1

e.g.

+

*Note: A Maximum of 1 action 

at the node + 1 action at a line 

per timestep is allowed

Combination of Node 

Splitting/Rejoining and 

Line Switching on/off

A total of 3120 possible actions in a single 

timestep!

+

27



Constraints

• Game Over if any of the following “hard” constraints is violated:
• Load should be met over all time steps of all scenarios

• No more than 1 power plants get disconnected over all time steps of all scenarios 

• The grid should not get split apart into isolated sub-grids over all time steps of all scenarios 

• AC power flow solution should converge over all time steps of all scenarios

• Violation on “soft” constraints may lead to certain consequences though not 

immediate “game over”:
• Line overload should be controlled over all time steps of all scenarios:

• Cooldown should be considered: 3 steps of cooldown is required before a line or node can be 

reused, the violation on this will cause: 1) step score to be 0; 2) the action will not be taken, 

resulting in no action.

Scenario Consequence Time Steps to Recover

Line Flow >= 150% Line immediately broken and disconnected 10

100% < Line Flow < 
150%

Wait for 2 more timestep to see whether the overflow is 
resolved; If not, line gets disconnected

3

Single-timestep Constraints

Multi-timestep Constraints

28



Problem Complexity

Total number of possible trajectories:

31205184

Action space for each time step
Total time steps of 1 scenario

（18 days with 5 mins intervals）

1st day 2nd day nth day
Scenario



Solve this Using Conventional Optimization Approach？
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The objective is to maximize the system available transmission capacity, an auxiliary variable λk is introduced. 

Formulation for a single-time-step (without considering multi-time-step constraints):

Generalized model for network topology change

Objective Fun.:
2

max

0,

1 ( ) ,

k

k
k

k

k

S
k

S





 

  

Constraints:

Constraints on bus voltage, 

generators, lines, and loads at a 

substation

Constraints on real and reactive 

power, volt., power flow, apparent 

power of a line

Constraints on power balance at a 

bus bar, number of bus splitting, 

and number of line switching.



Dueling DQN with Imitation Learning and Early 
Warning

31

• Architecture design • Dueling DQN structure and Performance

• Early Warning System

Test trained models on 200 unseen 

chronics, each has 5184 continuous steps

Autonomously controlling the grid for up 
to a month!!!

Combine power system physics with AI technologies

to obtain the best results



Demo on A Hard Sample Case

If Agent does nothing …

• Line 5-6, 4-5, 4-7, 4-9 are 

forced to switch off 

continuously, leading to 

game over.

Trained Agent

• Switch off line 10-11, line 
5-6 loadflow alleviated

• Switch off line 13-14, line 
2-5 loadflow alleviated

• Successfully goes through 
the system peak-load time

1

2 3

4
5

6
7 8

9

10

11

12
13

14

1

2 3

45

6
7 8

9

10

11

12
13

14
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Learn Load Dynamics using AI  - WECC CLM

33

Action a：load composition 

adjustment

Current State s: current load 

composition

+
Next State s’: new 

load composition

Sample n sets of 

load parameter

+

Generate n 

WECC CLM 

Dynamic Files

TSAT

Running 

Results
-

Reward

r

DDQN Training Environment

A two-stage approach is proposed for ZIP+IM, 

CLOD, and WECC CLM with as many as 130+ 

parameters.

In the first stage, DRL is utilized to identify the percentage 

of each component; in the 2nd stage, parameters of each 

component can be identified.

Accuracy for P，RMSE 0.12% 

Accuracy for Q，RMSE 0.64%

The approach is robust for fault at different locations,

different fault types, different fault clearing times. The results

using the identified model match the dynamic response of the

system.

Diff. Fault Locations

Diff. Fault Types Diff. Fault Clearing Time

For one Fault
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Method Validation

The left animation shows the identification process of different load components of the WECC 

CLM; the right one shows the tracking error. The algorithm converges pretty fast.
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Other Applications We’ve Developed/Are Developing

 Online learning for AI agents in face of significant topology and operating 

pattern changes

 Autonomous line flow control

 Learn generator/load dynamic model & parameters

 Data-driven AC OPF

 Multi-agent cooperative control for larger systems

Multiple Cooperative Dispatch Robots



• Intelligent monitoring & early warning

• Intelligent diagnosis of equipment

• Image recognition of power lines

• Situational awareness

• Model validation and calibration

• Excitation and damping control

• Maintenance Scheduling

• Renewable Forecasting

Trend of AI in Power Systems

• Power system operation and control

• Power system planning

• Power system asset management

• Power system economics and market

Developmental Trend

Generation

Transmission

Distribution

End user

• Knowledge map & intelligent reasoning

• Fault detection and location

• Intelligent analysis and self-healing ctrl

• Demand forecasting

• Load clustering and par. identification

Potential Applications

Monitoring

Diagnosis

Forecasting

Reasoning/planning

Decision making

Autonomous control

• RNN

• CNN

• GNN

• LSTM

• GAN

• SVM…

• (D)DQN

• DDPG

• A3C

• PPO

• SAC

• TRPO…
36



Challenges & Opportunities

• Data sets

• Platform

• Competitions based on common data sets & platform

37



White Paper – RL for Electricity Network Operation

RTE France, Google Brain, EPRI, ASU, GEIRINA, etc. published a White Paper 《Reinforcement Learning for Electricity 
Network Operation》, Introducing applications of RL in Power Systems, https://arxiv.org/abs/2003.07339

In 2020, two Power System AI Competitions will be hosted: https://l2rpn.chalearn.org/

https://arxiv.org/abs/2003.07339
https://l2rpn.chalearn.org/
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Thank You!

www.geirina.net
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http://www.geirina.net/

