

Maximum Power Point Tracking Strategy for Large-Scale Wind Generation Systems **Considering Wind Turbine Dynamics**

Can Huang, Fangxing Li

The University of Tennessee, Knoxville

Objective: An improved maximum power point tracking (MPPT) method is proposed, such that short-term wind speed forecasting, wind turbine dynamics, and MPPT are collectively considered to improve system efficiency.

I. Introduction

- Challenges of Wind Power Utilization
 - The uncertainties of wind speed
 - The mechanical losses of the WECS
 - The physical constraints of the WECS

> A Brief Review of Conventional MPPT Methods

MPPT technique	Anemometer	Tracking	Prior-knowledge	Online	Complexity	Tracking speed
		reference	of system	updating		
TSR	Required	$\omega^* = \lambda_{apt} \nu_m / R$	Required	No	Low	Fast
PSF	Not required	$P_g^* = k_{opt}\omega^3$	Required	No	Low	Fast
OT	Not required	$T_g^* = k_{opt} \omega^2$	Required	No	Low	Fast
WSE	Not required	$\omega^* = \lambda_{opt} \nu_e / R$	Required	Depending on	High	Fast

Multiple objectives of the control system

Not required N/ANot required

Yes

training methods High

low

II. Problem Formulation and Solution Approaches

Improved MPPT Method

HCS

III. Simulation Results

IV. Conclusions

- In this paper, a novel MPPT strategy is proposed for the variable-speed variable-pitch WECS operating in the partial load region. The control strategy aims to achieve a balance between power output maximization and operating costs minimization. It can improve the efficiency of MPPT and increase the life time of mechanical components.
- In the proposed approach, the wind speed error is modeled as Norm-Bounded without a known distribution. This likely represents a more realistic model in practice and avoids the assumption of the noise distribution.
- Furthermore, dynamic performances of large-scale wind generation systems are considered and an improved MPPT method is proposed to increase the system efficiency.

Reference

Can Huang, Fangxing Li, and Zhiqiang Jin, "Maximum power point tracking strategy for large-scale wind generation systems considering wind turbine dynamics," IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2530-2539, April 2015

