
The LTB Visualization tool uses the DiME program previously created by Parker Diamond and Richard

McEver to simulate large power grid networks. It then displays information about simulations in an

understandable form. This is accomplished using a Django server to handle client requests and

connections, spawn and destroy simulations, and save information to disk, and a browser-based

visualization tool that relies almost entirely on JavaScript.

Large-Scale Testbed Visualization

Vishnu Chander, Jeremy Herwig, Anthony Huber

 The University of Tennessee, Knoxville

ABSTRACT:

FRONT-END

When a client connects to the webserver they will be

prompted to log in to the application. Anyone can replay old

simulation data that has been saved on disk, but only

privileged users can start a simulation. If the client requests

saved data then web application requests metadata on the

previous simulation, processes this information, and then

starts requesting actual data. The requested bus variable will

be displayed on the map and all other variables are available

for plotting. The user must create a new simulation

configuration to begin a new simulation. Once this is done

and the user starts the simulation, the web app will send the

appropriate data to the backend to start the simulation. The

backend will spawn DiME and the proper Matlab modules, and

begin listening to DiME for the proper data. This all gets saved

to a local cache and saved to disk.

The front-end for this visualization tool consists of a map view, a control panel, and a plotting

system. The control panel uses Ajax requests to handle most of the visualization tool’s

communication with the back-end. The plotting system uses the Highcharts JavaScript library to

display detailed information pertaining to user-selected simulation components in the form of

custom line graphs. The map view displays basic information by coloring a canvas layer that sits

on top of a map generated via the Leaflet JavaScript library.

BACK-END

There are two parts to the back-end, a module that handles data

and metadata fetching, and a module that handles LTB

simulations. Data fetching uses the python Bottle library’s

webserver to listen for requests from the web application. The

client sends a request for metadata about a previously ran

simulation, and then will request the data from that simulation.

Simulation handling uses a Linux program called Systemd.

Systemd acts as the operating system’s initial program and will

spawn all other startup programs. We use this to manage our

scripts resources, cleaning up after the programs finish or fail.

This system also allows us to have pseudo servers as we just

have to make a request to Systemd and it will spawn the

appropriate script instead of having them stay online. This group

of programs start, stop, destroy, list, and communicate with the

simulations.

LIFE-CYCLE

