

Modeling Thrust Overview

Stella Sun (UTK)

Ali Abur (NEU) **Thrust Leader**

NSF-DOE Site Visit November 9, 2020 Virtual

Rensselaer Northeastern

Luigi Vanfretti (RPI)

Modeling in CURENT, Linkage, and Research Focus

Objective

Develop modeling and estimation methods to facilitate wide-area monitoring, control and actuation tasks while addressing associated cyberphysical security challenges.

Research Focus

Robustness against errors Model complexity CPU requirements Detection and mitigation of vulnerabilities to cyber and physical attacks

2

Modeling Thrust Intellectual Merit and Broader Impact

Intellectual Merit:

- Improves situational awareness and enables critical control actions via accurate and robust estimation of key system states
- Facilitates power system studies that require faster-than-real-time simulations

Broader Impact:

- Allows seamless integration and utilization of renewable energy sources by robust tracking of the system state, network model and device parameters under diverse operating conditions.
- Developed methods for power grids can be used in analysis of other networks such as transportation, health care, communication, etc.
- Increased partnerships between academia and industry
- Improved STEM education via REU and other outreach activities

Modeling Thrust Contributors

Faculty

- Stella Sun, Hairong Qi, Kai Sun, Kevin Tomsovic (UTK)
- Joe Chow, Luigi Vanfretti (RPI)
- Mandoye Ndoye (Tuskegee University)
- Alex Stankovic (Tufts)
- Hanoch Lev-Ari, Ali Abur (NEU)

Industry & Other Sponsors/Partners

• ISO-New England, PJM Interconnection, ORNL, Dominion, EPRI

Modeling Thrust Roadmap and Key Milestones

	Generation I	Generation II	Generation III
	(Y1-Y3)	(Y4-Y6)	(Y7-Y10)
Estimation	 Phasor only state estimator (NPCC system as test-bed) Phasor data error and contingency management Resiliency against bad data, sensor failures and data latency Impact of communication delays 	 Multi-area phasor-only estimator Network model error detection and identification method Robust and computationally efficient dynamic state estimator: Method development, testing and evaluation 	 State and topology estimation using node-breaker model 3-phase SE for T&D systems with renewable sources. Incorporating robust estimator into testbeds
Communication & Cyber Security	 Impact of communication delays in estimation Detection and identification of network disturbances Defense strategies against cyberattacks on networks carrying PMU data Secure outsourcing of intensive computations - method & testing 	 Develop architectures for secure communications for wide-area SCADA systems Determine effective security countermeasures for SCADA/PMU systems Toward real-time detection and identification of multiple disturbances 	 Identification of cyber-attacks on measurements, network parameters, communication links Characterization and co- simulation of power and communication systems
Modeling Methodology	 Modeling spatial and temporal uncertainties in power and communication networks 	 Quantifying vulnerability against uncertainties in network models Reduced models with analytical and observed data Fast Time-Domain Simulations 	 Detection/removal of 1 and 3- phase network parameter errors Faster than real-time modeling and simulation of PS dynamics
	NT	data Fast Time-Domain Simulations 	and simulation of PS dyna

Year 9 Achievement Summary

- Development in Modelica of a hybrid Electromagnetic-Transient and Transient-Stability interface, allowing the assembling of a heterogeneous power system model in a single environment, that can be analyzed and simulated in multiple tools.
- Validation of the semi-analytical simulation approach on realistic differential-algebraic equation models of the Polish 2383-bus system and a reduced EI system with detailed generator and ZIP load models and integration of the approach with parallel-in-time simulation on HPC.
- Development of a decoupled three-phase state estimator which can be used for systems with non-transposed and/or mixed phase lines.
- Development of a scalable and robust state and topology estimator which uses nodebreaker models and eliminates the need for a topology processor.

State Estimation without Topology Processor

Task Goals:

 Develop a generalized state estimator capable of detecting simultaneous topology and metering errors

Barriers:

- Numerical issues with the inclusion of switching devices
- Compromised observability and redundancy due to new state variables
- Scalability challenges of node-breaker modeling

Research Achievements:

- Innovations in the estimation techniques to handle equality constraints
- Optimal measurement placement at substation level to minimize the total measurement count
- Judicious use of PMUs to enable zonepartitioning and parallel processing

A General Decoupled Framework for SE Based on PMU Measurements

Task Goals:

- Develop a decoupled SE method for more general systems with non-transposed and mixed-phase transmission lines
- Introduce a compensation method for decoupled SE Barriers:
- Three-phase non-transposed lines
- Mixed-phase lines in distribution systems
- Bad data incident to the compensated lines

Research Achievements:

- Modeling non-transposed and mixed-phase lines
- Compensation method to use the decoupling to incorporate non-transposed and non-three-phase lines
- Method for decoupled SE using compensation method
- Bad data identification and correction in a decoupled framework

	Unbalanced Loads	Non-transposed Lines	Decoupling Compensation
Conf. I	\checkmark	-	-
Conf. II	\checkmark	\checkmark	-
Conf. III	\checkmark	\checkmark	\checkmark

Transmission system case: modified 118 bus system

	Maximum Absolute Error		
	Zero Seq	Positive Seq	Negative Seq
Conf. I	1.3×10^{-13}	1.8×10^{-12}	1.6×10^{-13}
Conf. II	4.5×10^{-3}	1.4×10^{-3}	$8.9 imes 10^{-3}$
Conf. III	8.8×10^{-12}	1.0×10^{-11}	6.5×10^{-12}

Distribution system cases: IEEE 13 & 34

ys	nf.	$ \Delta V (p.u.) \& \Delta \theta (deg)$		
S	Co	а	b	С
IEEE-13	II	0.0742^{*}	0.1353	0.0208
		2.013**	1.355	2.158
	Ш	$5.6 imes 10^{-14}$	$1.9 imes 10^{-13}$	$8.5 imes 10^{-14}$
		$2.4 imes 10^{-12}$	$6.9 imes10^{-12}$	$5.5 imes10^{-12}$
IEEE-34	II	0.0628	0.1791	0.1741
		0.160	1.5	1.602
	III	3.5×10^{-14}	2.5×10^{-13}	7.1×10^{-14}
		1.7×10^{-12}	1.4×10^{-11}	$5.7 imes 10^{-12}$

*odd rows indicate voltage magnitudes error

** even rows indicate phase angles error

Heterogeneous Modeling and Simulation of Coalesced Transmission and Energy Storage Systems for Power System Stability Analysis

<u>Task goals:</u>

- Heterogenous modeling: two different modeling approaches, same environment; i.e. EMT and Phasor/+ve Sequence
- Interoperability: exploit a standardized (many tools adopt it) an equation-based object-oriented computer modeling language (focus on modeling not the numerical solution)
- Model Re-use: time-domain simulation, linearization and control design to be carried on a singular environment <u>Barriers:</u>
- Today, different isolated tools are used for power-electronics and power system analysis, limits the understanding of interactions
- Phasor (PSS/E-like) simulation with power electronics, imposes simplifications → loss of information → hard to capture interactions
- EMT models addresses these simplifications, but large models lead to unsurmountable computational burden/time and hard to analyze

Research Achievements:

- Development of a heterogeneous EMT-TS power system model that can be modeled in a singular environment
- Tool-agnostic: integrated modeling using standard-based language (Modelica), many tools can understand it
- Simulation and full linearization of heterogeneous models, allowing control design using entire hybrid EMT-TS models

Fig 1. Simple phasor-domain SMIB system with a detailed EMTP-like model of a battery energy storage system.

Fig 2. Linearization: Root used for tuning the the PSS controller in the BESS.

Prof. Luigi Vanfretti

Fig 3. Phasor (a) and wave (b) results obtained from the hybrid model. Fig. 3 (a) shows two simulations, in blue it shows the response without the BESS, and in red the response with the BESS tuned using root locus (Fig. 2)

Semi-Analytical Approach for Simulation and State Prediction

Task Goals:

• Enable real-time simulation and prediction of the system state for proactive control considering uncertainties of renewables

Barriers:

- Low-efficiency of numerical simulation in real time.
- Lack of grid state prediction for control of renewables.

Research Achievements:

- A new semi-analytical approach for real-time grid simulation with renewables.
- A number of new mathematical tools for semi-analytical solutions (SASs) of realistic power grid models.
- Validations on fast simulation of Polish 2383-bus system and reduced EI model and state prediction of wind farms for adaptive frequency response.
- Integration with ORNL's parallel-in-time simulation on HPCs.
- Interfaced with ANDES to demonstrate simulation speedup.

Semi-analytical solvers for power system DAEs

10

Task Goals:

 Vulnerability assessment of machine learning used for detecting false data injection (FDI) attacks

Barriers:

- Lack of study on the security of machine learning used for FDI attack detection and other critical power system applications
- Potential security flaws could cause harm to human and assets

Research Achievements:

- Developed constrained adversarial machine learning, a feasible attack on the machine learning models used for FDI detection
- Developed a general threat model with physical and topological constraints suitable for critical infrastructure cyber-physical systems

Attack	Case	Accu	L ₂ -Norm	Time (ms)
	10	0%	4077.43	5.8
Supreme	13	0%	8403.84	12.9
	15	0%	7979.26	6.8
	10	0%	1049.52	5.7
Erba [11]	13	0%	1164.71	5.84
	15	0%	1578.87	5.94
	10	0%	2527.8	42
white-box	13	0%	4984.03	96.8
	15	0%	7029.26	52.9
	10	21.1%	2404.76	34.2
gray-box1	13	48.9%	5356.09	87.1
	15	30.0%	9133.15	7.96
	10	0%	2247.21	400.25
gray-box2	13	5.4%	4882.95	222.4
	15	8.1%	6610.6	126.9
	10	14.4%	1843.2	131.9
black-box	13	4.3%	4786.72	209.6
	15	28.1%	9079.02	163.3

Performance of the variants of the adversarial attack. The accuracy (Accu) of machine learning used for FDI detection is significantly reduced.

Modeling Plan for Next Year

	Year 10
Estimation	 Combining distribution and transmission SE and validating on LTB Development of a decoupled 3-phase SE using SCADA and limited PMU measurements Extension of parameter error detection to 3-phase network model using SCADA/PMUs
Cyber-Physical Security	 Develop countermeasures for adversarial machine learning attacks Build security into machine learning used for critical power system applications
Modeling & Simulation	 Real time simulation of heterogeneous phasor/wave systems using the FMI standard Integration of SAS and numerical methods in the HPC-enabled parallel-in-time framework for simulating future power grids with power electronics Integration of physics and data driven models of power system dynamics Implementation of developed methods on testbeds
CURENT	10

Modeling Research Directions Beyond Year 10

- Application of Dynamic State Estimation to various power system control, protection and optimization problems.
- Applying the developed software tools for positive sequence network applications to three-phase or mixed phase unbalanced sub-transmission and/or distribution grids.
- Exploiting the development of the hybrid interface and heterogeneous models to assess interaction between controllers in power systems with high penetration of power electronic devices.
- Improving power system resilience during extreme events by exploiting the detection and estimation tools developed in CURENT.
- Demonstration of HPC-enabled faster-than-real-time simulation and analysis tools.

Acknowledgements

This work was supported primarily by the ERC Program of the National Science Foundation and DOE under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program.

Other US government and industrial sponsors of CURENT research are also gratefully acknowledged.

