A PSO Based Control Strategy for Combined Emission Economic Dispatch with Integrated Renewables

2020 CURENT NSF/DOE Site Visit and Industry Conference
Virtual
Nov. 2020

Gregory Murphyacd (Project Lead), Abdul Shafae Mohammedbcd
aFaculty, bGraduate Student, cElectrical Engineering,
dTuskegee University
Motivation And Project Goals:

- High penetration of integrated renewable energy sources requires scheduling of both conventional and renewable energy generators, to minimize the emission of pollutants and maximize the renewable energy resources.
- Design and implement a particle swarm optimization (PSO) based control strategy to control each independent region of power system and minimize the operational cost for the combined emission economic dispatch (CEED) problem.
- To develop an optimized cost function for calculating the operating cost for the power system based on the fitness of each particle(generator), wind and solar O&M cost.

Problem Formulation:

- The fuel cost function:
 \[F_i(P_i(t)) = a_i + b_i * P_i(t) + c_i * P_i^2(t) + \sum_{j=1}^{n} e_{ij} * \sin[(P_i(t) - P_{ij})^2] \]
 Where, \(a_i, b_i, c_i \) and \(P_{ij} \) are coefficients of fuel cost and generator output and \(e_{ij} \) are coefficients to model valve point loading effect

- The emission cost function:
 \[E_i(Y_i) = \alpha_i + \beta_i * Y_i + \epsilon_i * \exp(\mu_i * P_i(t)) \]
 Where, \(\alpha_i, \beta_i, \epsilon_i, \mu_i \) and \(P_i \) are the coefficients of emission cost and output of conventional generator respectively.

Conclusion:

- A combined emission economic dispatch problem was solved with effective integration of intermittent renewable energy sources via a PSO based control algorithm
- Optimally integrated wind and solar in the power system.
- Minimized the operational cost of traditional generators and found the optimal cost for the whole system for 24 hours.
PSO Algorithm and Evaluation of PSO

PARTICLE SWARM OPTIMIZATION: ALGORITHM STEPS

- **Step 1**: Initialize population and define the acceleration coefficients and weight inertia.

- **Step 2**: Create the structure for the particles and randomly select set points.

- **Step 3**: Define each particle Initial position and velocity, then for each particle calculate its best cost, position and find the global best.

- **Step 4**: Calculate the new velocity for every particle and update its new position, then, finally evaluate its fitness.

- **Step 5**: Repeat step-4 for all the combinations.

- **Step 6**: The objective function is used to evaluate optimized cost for all particles associated with all combinations at each time-interval.

EVALUATION OF FITNESS OF PSO:

The constraints have been set for the conventional generators, and wind generators. Thus if the constraints are violated then a penalty is applied to the cost function.

\[
C_{n} = \left(\sum_{i=1}^{j} G_{n} \right) - (T_{k})
\]

\[
\text{Pen}(k) = M\times \text{Pen}(k)
\]

\[
\text{Fitness}(k) = (C(k) + \text{Pen}(k))
\]

Where:

- \(C_{n} \) is the constraints for each \(n \)-th generator and wind generator.
- \(\text{Pen}(k) \) and \(\text{Fitness}(k) \) is penalty and fitness at \(k \) time-interval.
- \(M \) is the max fuel cost per unit and total demand.
- \((T_{k}) \) is the max fuel cost per unit and total demand.
Results

Cost Comparison for Area-1

Load Bus Voltage Comparison Area-1

Cost Comparison for Area-2

Cost Comparison for Area-3

Load Bus Voltages (Base Case)

Load Bus Voltages (Optimal Case)
This work was supported primarily by the ERC Program of the National Science Foundation and DOE under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program.

Other US government and industrial sponsors of CURENT research are also gratefully acknowledged.