Adaptive Damping Control for Three Major Utilities: Hardware-In-the-Loop Test

Yi Zhao¹, Lin Zhu¹, Chengwen Zhang¹, Ibrahim Altarjami¹, Xianda Deng¹, Yilu Liu¹,², Evangelos Farantatos³, Hossein Hooshyar³, Mahendra Patel³, Atena Darvishi⁴, George Stefopoulos⁴, Cosimo Pisanì⁵, Roberto Zaottini⁵, Ali H. Al-Mubarak⁶, Salem. O. Bashraheel⁶

Adaptive Damping Control for Three Major Utilities: Hardware-In-the-Loop Test

Background and motivation:
• Oscillation damping controllers tuned offline usually have limited adaptive capability to varying operating conditions.
• An adaptive measurement-driven controller has been developed and validated by simulations in three realistic large power grid models.
• Aiming at field demonstration, the controller is further tested in a hardware-in-the-loop (HIL) setup under realistic operating conditions including measurements noise, signal latency, and data loss, using realistic power grid models.

Technical approach:
• The controller was implemented on a generic hardware platform - CompactRIO
• Built a HIL test setup based on RTDS or OPAL-RT real-time digital simulator
• The realistic grid models were emulated on RTDS or OPAL-RT
• Included communication network impairment simulator to introduce time delay and data loss

Results:
RTDS/OPAL-RT based HIL test setup
• The controller was tested in three realistic power grid models using actual oscillation events: Continental Europe power grid, New York State power grid, and Saudi Arabia power grid.
• The controller can provide sufficient damping control under random time delay, occasional or consecutive data loss.
• The controller can enhance both small-signal stability and transient stability.

Conclusion:
• The controller was tested in three realistic power grid models using actual oscillation events: Continental Europe power grid, New York State power grid, and Saudi Arabia power grid.
• The controller can provide sufficient damping control under random time delay, occasional or consecutive data loss.
• The controller can enhance both small-signal stability and transient stability.
• Next steps: Field test and field demonstration
Hardware-In-the-Loop Test Setup and Controller Implementation

- Real-time digital simulator: RTDS or OPAL-RT
- Voltage amplifiers
- PMU devices
- National Instruments (NI) CompactRIO
- Communication Network impairment simulator

Basic function modules:
- PMU data receiver
- Lead-lag structure
- D/A converter
- Visualization GUI

Advanced function modules:
- Delay compensation
- Missing data handling
- Supervisory control
- Oscillation detector
Hardware-In-the-Loop Test Results in Three Realistic Power Grid Models: Continental Europe, NY State, and Saudi

- The controller can provide sufficient damping under random time delay, occasional or consecutive data loss.
- The controller can enhance both small-signal stability and transient stability.

HIL test: Continental Europe power grid
150-950 ms random delay + 60% data loss

HIL test: New York State power grid
Chunk of data loss for 10 seconds

2.04 GW generation trip

HIL test: Saudi Arabia power grid

System Separates

WADC prevents system separation
Acknowledgements

This work was supported primarily by the ERC Program of the National Science Foundation and DOE under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program.

Other US government and industrial sponsors of CURENT research are also gratefully acknowledged.