Programmable Gate Driving Platform for Easy Device Driving and Performance Tuning

2020 CURENT NSF/DOE Site Visit and Industry Conference
Virtual
Nov. 2020

Wen Zhang1 Fred Wang1,2 Bernhard Holzinger3
1 The University of Tennessee
2 Oak Ridge National Lab
3 Keysight Technologies
Background and Objectives

• Power semiconductors have drastically different gate or base driving requirements
• Various kinds of driving schemes have been developed to tackle switching transient issues
• Objectives
 ○ A programmable gate driving platform capable of driving most power semiconductor devices
 ○ Flexible to adjust transient performance but still replicable with off-the-shelf components

Technical Approaches

• Gate driver topology to allow easy reconfiguration of driving schemes
• PC to FPGA control interface to allow precision switching timing control and supply voltage control
• Miniaturized connection from gate driver to power semiconductor to reduce gate loop inductance
• Demonstration with Si IGBT, SiC MOSFET, SiC BJT, GaN HFET to validate the capabilities

Conclusions

• Programmable driver platform capable of emulating both voltage, impedance and current source driving is demonstrated
• The platform enables fast device characterization under different gate driving schemes and allows easy gate driving optimization
Programmable Gate Driving Architecture

- HDLC over UART to control both the switching timings and supply voltages
- Supply voltage control is achieved with digital potentiometers in the feedback loop of either LDO or Buck-Boost converter
- Castellated hole connections to minimize the gate loop inductance

- The programmable gate driver can emulate
 - Up to 9 level voltage source driving
 - Complex impedance driving
 - Current source driving

General Topology

- **Impedance Driving**
- **Current Source Driving**
Gate Driving Performance Tuning

- Current source driving for SiC BJT significantly reduces the turn-off loss
- GaN HFET crosstalk mitigation demonstrates the performance tuning

GaN HFET Crosstalk Mitigation by Tuning Negative Voltage and Pulse Time

- Current source driving for SiC BJT significantly reduces the turn-off loss
- GaN HFET crosstalk mitigation demonstrates the performance tuning
Acknowledgements

This work was supported primarily by the ERC Program of the National Science Foundation and DOE under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program.