Converter Analysis Using Discrete Time State-Space Modeling

2020 CURENT NSF/DOE Site Visit and Industry Conference
Virtual
Nov. 2020

Jared Baxter
Dr. Daniel Costinett

The Bredesen Center
University of Tennessee, Knoxville
Converter Analysis Using Discrete Time State-Space Modeling

Background and motivation:
- Discrete time, state-space modeling shows merits for general, rapid analysis of switching converters but has issues incorporating nonlinear elements
- Broaden the capabilities of incorporating nonlinear elements into a generalized discrete time, state-space modeling framework

Technical approach:
- Solve directly for the steady-state of switching converter
\[X_{ss} = \left[I - \prod_{i=1}^{m} e^{A_i t_i} \right]^{-1} \times \sum_{i=1}^{m} \left[\left(\prod_{k=i+1}^{m} e^{A_k t_k} \right) A_i^{-1} \left[e^{A_i t_i} - I \right] B_i u_i \right] \]
- Develop of a framework to correct state dependent switching

Conclusions:
- Proposed method is general to switching converters and can give fast insight to converter performance
- Utilize the eigenvalues of the converter to potential correct single frequency errors in passive switching

Fig 1. Detailed flow diagram of broad electrical domain design of a synchronous buck converter
Converter Analysis Using Discrete Time State-Space Modeling

- Time intervals must be known before directly solving steady state
- State dependent switching must be solved for after finding the initial steady state solution

Fig 2. Synchronous Buck Converter

Fig 3. Synchronous Buck Converter Deadtime Waveforms

TABLE I

<table>
<thead>
<tr>
<th>BUCK CONVERTER DEADTIME SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Solution</td>
</tr>
<tr>
<td>Time Interval</td>
</tr>
<tr>
<td>Circuit Model</td>
</tr>
<tr>
<td>Conducting Devices</td>
</tr>
<tr>
<td>Final Solution</td>
</tr>
<tr>
<td>Time Interval</td>
</tr>
<tr>
<td>Circuit Model</td>
</tr>
<tr>
<td>Conducting Devices</td>
</tr>
</tbody>
</table>

State Dependent Switching Error Causes Invalid Diode Voltage
Converter Analysis Using Discrete Time State-Space Modeling

- Developed an algorithm to correct for constant slope and high frequency errors
- Results showed faster steady state convergence time compared to other simulation methods and accuracy to experimental results

![Converter Simulation and Experimental Results](image)

Fig 4. Flyback Converter Simulation and Experimental Results

![Flow diagram to find steady-state](image)

Fig 5. Flow diagram to find steady-state
Acknowledgements

Authors made use of shared facilities sponsored by ERC program of the National Science Foundation (NSF) and DOE under NSF award number EEC-1041877 and the CURENT Industry Partnership Program.

This material is based upon work supported by the National Science Foundation under Grant Number 1751878.

Other US government and industrial sponsors of CURENT research are also gratefully acknowledged.