A Test Scheme for the Comprehensive Qualification of MMC Submodule Based on 10 kV SiC MOSFET under High dv/dt

2020 CURENT NSF/DOE Site Visit and Industry Conference
Virtual
Nov. 2020

Xingxuan Huang1, Shiqi Ji1, Dingrui Li1, Cheng Nie1, William Giewont1, Leon Tolbert1,2, and Fred Wang1,2

1The University of Tennessee
2Oak Ridge National Laboratory
Summary

Background and motivation:
• Modular multilevel converters (MMCs) based on 10 kV SiC MOSFETs are promising in medium voltage applications
• Numerous challenges due to high dv/dt and submodule voltage brought by 10 kV SiC MOSFETs: insulation design, noise immunity, etc
• Comprehensive submodule testing is critical and necessary to find problems at the submodule level

Proposed test scheme for MMC submodules:
• Simple test scheme: only 3 steps; test circuit with simple configuration
• AC-DC continuous test with two cascaded submodules resembles real MMC operation
• With designed modulation, two submodules switching simultaneously to generate high dv/dt
• Simple open loop method designed to achieve submodule voltage balancing

Conclusion:
• The proposed simple test scheme features an ac-dc continuous test circuit with two submodules in series to resemble real MMC operation
• The developed ac-dc continuous test circuit can test noise immunity under high dv/dt, thermal design, and insulation design of the MMC submodule simultaneously
• Submodule voltage balancing is realized with a simple open loop method with external parallel resistor
Proposed Test Scheme

AC-DC continuous test circuit: two MMC submodules in series

Modulation scheme: bipolar SPWM modulation

Submodule under test

Submodule with controllable dv/dt

AC-DC continuous test

Thermal design

Insulation design

Capability to withstand high dv/dt

Open loop voltage balancing of submodules

Submodule 1

Submodule 2

Without external parallel resistor

With external parallel resistor

Without parallel resistor for voltage balancing

With 100 kΩ parallel resistor for voltage balancing

Simulation results ($V_g=6$ kV)

$I_{load,pk} = \frac{mV_g}{2\pi f_{line}L_{load} + R_{load}}$
Experimental Setup and Results

• 500 kΩ/100 W balancing resistor for each submodule; MMC arm inductors used as load
• Proposed ac-dc test circuit for MMC submodules validated at 6 kV dc-link voltage
• 2X dv/dt generated for submodule under test confirmed in the test
• Submodule voltage balancing achieved with the developed open loop method

\[V_g = 2.1 \text{ kV} \]
Acknowledgements

This work made use of shared facilities sponsored by ERC program of the National Science Foundation (NSF) and DOE under NSF award number EEC-1041877 and the CURENT Industry Partnership Program.

Other US government and industrial sponsors of CURENT research are also gratefully acknowledged.