Safety Verification for Power Systems using the Handelman Representation

2020 CURENT NSF/DOE Site Visit and Industry Conference
Virtual
Nov. 2020

Samaneh Morovati1, Yichen Zhang2, Seddik M.Djouadi1, Kevin Tomsovic1

1The University of Tennessee, Knoxville
2Argonne National Laboratory
Safety Verification for Power Systems using the Handelman Representation

Background and motivation:
Verifying safety is as critical as stability synthesis for various nonlinear control applications, such as, electric power systems. We:
❖ Provide a barrier certificate term to obtain the region of safety (RoS)
❖ Find a positive definite polynomial as a barrier function using linear programming relaxation and Handelman representation for positive polynomials over polyhedral sets.

Technical approach:
- Keeping system trajectory in the safety limits is critical to avoid loss of generation and load in real world power system operations
- Encoding positivity of constructed barrier certificate in order to guarantee safety
- Linear programming relaxation by Handelman representation to prove the positivity of barrier function represented by polynomials on a compact complex polyhedral

Conclusion:
➢ Verifying safety is essential for systems that have safety critical limits, especially in systems with complex behaviors such as electric power systems.
➢ Utilizing Linear programming relaxation by Handelman representation to find the barrier certificate.
➢ Providing simulation results for two case studies that is validated by SoS programming.
➢ Considering extending the proposed method to find the region of safety in large-scale systems as a future work.
Consider a system governed by a set of differential equations as:
\[\dot{x}(t) = f(x(t), d(t)), \] where, \(x(t) \in \mathbb{R}^n \) and \(d(t) \in \mathbb{R}^m \) is a large but bounded disturbance in a set \(D \):

Safety: Given \((\dot{x}(t)), X_0, X_u, X \) and \(D \), the system has the safety property if there is no time instant \(T \geq 0 \) and no piecewise constant bounded disturbance \(d: [0, T] \to D \ni \varphi(t|x_0,d) \cap X_u \neq 0 \forall t \in [0, T] \)

Region of Safety: A set that only initializes trajectories with the property specified in Safety definition is called a region of safety. This is achieved thanks to a **barrier function** \(B(x) \):

\[B(x): \mathbb{R}^n \to \mathbb{R} \] satisfies the following conditions using the Handelman representation:

\[B(x) \leq 0 \quad \forall x \in X_I \; ; \quad B(x) > 0 \quad \forall x \in X_u \; ; \quad \frac{\partial B}{\partial x} f(x, d) \leq 0 \quad \forall (x, d) \in X \times D \]
Safety Verification for Power Systems using the Handelman Representation

Handelman Representation: Let \(P = \{P_1, \ldots, P_m\} \) be polynomial bases, \(f_i = \{P_1^{n_1} \ldots P_m^{n_m} \mid n_j \leq D\} \) be the set of polynomials and \(K := \{x \in \mathbb{R}^n : P_j(x) > 0\} \) is A compact polyhedron if \(P_j(x) \) is \(a_jx - b_j \geq 0 \), then:

- If \(P(x) \) is strictly positive over a compact polyhedron \(K \), there exists a degree bound \(D > 0 \) such that:
 \[
P(x) = \sum_{f \in P} \lambda_i f_i \quad \forall \lambda_i \geq 0 \quad P(x) \text{ has a Handelman representation.}
 \]

Utilizing Linear programming relaxation by Handelman representation to find the barrier certificate for polynomial systems.

\[
\begin{align*}
\delta & = \begin{bmatrix} 0 \\ -20.44 \end{bmatrix} \omega \\
\omega & = \begin{bmatrix} 6.28 \\ -0.14 \end{bmatrix} \delta \\
\omega & = \begin{bmatrix} 0 \end{bmatrix} \omega \\
\end{align*}
\]

\[
X_u = \{[\delta \omega]^T : |\omega| \geq 0.5\}
\]
Acknowledgements

This research was sponsored in part by the Engineering Research Center Program of the National Science Foundation and the Department of Energy under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program. The work was also supported in part by the National Science Foundation under NSF-ECCS-Awards 1711432 and 1509114, and by a Joint Directed Research and Development (JDRD) grant.