Residential Load Shaping with Transactive Controls

2020 CURENT NSF/DOE Site Visit and Industry Conference
Virtual
Nov. 2020

Ian Schomer¹, Ben Ollis², Fran Li¹

¹University of Tennessee Knoxville
²Oak Ridge National Laboratory
Residential Load Shaping with Transactive Controls

Background and motivation

- Power demand has large, daily variations that stress the physical system and incur economic inefficiencies.
- Curve flattening during peak hours is achieved by influencing or controlling flexible loads.
- Transactive control uses price signals to communicate the value of reducing load.
- Avoiding direct thermostatic control upholds the privacy of participants.

Technical approach

- Consider a neighborhood of N homes equipped with PV and smart HVAC controllers.
- Objective: minimize the maximum aggregate load during peak hours.
- Build transactive control signals, unique to each home:

 $$p_i(t) = \begin{cases}
 \lambda_{pre} & \tau_1 \leq t \leq \tau_1 + \tau_2, \\
 \lambda_{peak} & \tau_1 + \tau_2 \leq t \leq \tau_1 + \tau_2 + \tau_3, \\
 \lambda_{base} & \text{otherwise}
 \end{cases}$$

Conclusion

- Consistent peak reduction over baseline is achieved using a Bayesian Optimization routine.
- Customers experience utility bill price reductions on average.
- Unique factors including high dimensionality, unknown gradients, and expensive evaluations pose challenges for the scalability of this routine that will be further investigated.

Fig. 1. Typical transactive control signal shape

Fig. 2. Customer bill changes
Bayesian Optimization

Challenges
• Load response \rightarrow black-box function
• Slow model \rightarrow expensive evaluations

Bayesian Optimization
• Given prior dataset $D = \{(x_n, y_n) | n =$
Simulation Results

Optimization Algorithm

Set bounds for \(\tau_1, \tau_2, \tau_3 \)

Suggest next \(x = [\tau_1 \ldots \tau_{3N}] \)

Run black-box load forecast model

Evaluate output and calculate \(y|x \)

Update model covariance matrix with \((x, y) \)

Return \(x_{\text{best}} \)

- The chosen price signals cause a precool around 4p.m. to reduce peak load between 6 – 7p.m.
- Simulations with \(N = 10 \ldots 60 \) homes verifies a 10% or greater peak reduction in the neighborhood
- Overall results show promise for real-time application in neighborhood-level microgrid controller
This work made use of Engineering Research Center shared facilities supported by the Engineering Research Center Program of the National Science Foundation and the Department of Energy under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program.

The primary sponsor of this research work is Oak Ridge National Laboratory.