Large-Signal Stability Analysis of Self-Turn-On in Switching Transients

2020 CURENT NSF/DOE Site Visit and Industry Conference
Virtual
Nov. 2020

Wen Zhang¹ Fred Wang¹,²
¹ The University of Tennessee
² Oak Ridge National Lab
Large-Signal Stability Analysis of Self-Turn-On in Switching Transients

Background and Motivation
- Switching behaviors of fast power semiconductors are sensitive to parasitic elements
- Previously self-turn-on phenomena are observed where MOSFETs are falsely turned on by the common source inductance during turn-off transient
- Existing analysis are based on either time-domain waveforms or small-signal modeling, but switching transients are highly nonlinear and large-signal

Technical Approach
- Formulating the Brayton-Moser mixed potential function which describes a circuit in a “energy gradient” form
 \[
 \frac{dx}{dt} = Q^{-1}(x) \cdot \frac{dP}{dx}
 \]
- Applying the large-signal asymptotic stability criteria
 \[
 \mu(\tilde{R}_1^s) + \mu(\tilde{R}_2^s) \geq \delta, \delta > 0
 \]
- Performing parametric study on self-turn-on phenomena to understand the root cause

Conclusions
- Switching transients are highly nonlinear and large-signal, but can be nicely described with mixed potential function
- The root cause of self-turn-on phenomena includes not only the common source inductance, but also the nonconventional voltage dependence of trench MOSFETs’ parasitic capacitance
Mixed Potential Function

Given \(x = [i \ v]^T, i = [i_g \ i_d]^T, v = [v_{gs} \ v_{ds} \ v_{ka}]^T \), the circuit can be described as

\[
\frac{dx}{dt} = Q^{-1}(x) \cdot \frac{dP}{dx},
\]

where

\[
Q(x) = \begin{bmatrix}
-L(i) & 0 \\
0 & C(v)
\end{bmatrix},
\]

\[
L(i) = \begin{bmatrix}
L_g + L_s & L_s \\
L_s & L_d + L_s
\end{bmatrix},
\]

\[
C(v) = \begin{bmatrix}
C_{gs} + C_{gd} & -C_{gd} & 0 \\
-C_{gd} & C_{gd} + C_{ds} & 0 \\
0 & 0 & C_{ka}
\end{bmatrix},
\]

\[
P(x) = A(i) + B(v) + N(i,v),
\]

\[
A(i) = -V_g i_g - V_d i_d + \frac{1}{2} R_g i_g^2 + \frac{1}{2} R_d i_d^2,
\]

\[
B(v) = L_v i_{ka} + \frac{1}{2} G_M v_{ds}^2 + \frac{1}{2} G_D v_{ka}^2,
\]

\[
N(i,v) = v_{as} i_d + v_{gs} i_g + v_{ka} i_d.
\]

Asymptotic Stability Criteria

Denote

\[
K_1(i,v) = \frac{1}{2} A_{ii}(i) + \frac{1}{2} ([A_i(i) + \gamma v]L^{-1}(i))_i L(i)
\]

\[
K_2(i,v) = \frac{1}{2} B_{vv}(v) + \frac{1}{2} ([B_v(v) - \gamma^T i^T C^{-1}(v)]_v C(v)
\]

Further denote

\[
\tilde{K}_1^s(i,v) = \frac{1}{2} L^{-\frac{1}{2}}(K_1 + K_1^T)L^{-\frac{1}{2}}
\]

\[
\tilde{K}_2^s(i,v) = \frac{1}{2} C^{-\frac{1}{2}}(K_2 + K_2^T)C^{-\frac{1}{2}}
\]

The sufficient but not necessary condition for asymptotic stability is

\[
\mu(\tilde{K}_1^s) + \mu(\tilde{K}_2^s) \geq \delta, \delta > 0
\]

and \(P(x) \to \infty \), as \(|x| \to \infty \), and \(\mu(S) \) means the infimum of the eigenvalues of \(S(x) \) over all \(x \)

* **Note** the asymptotic stability is a very “strong” stability requirement
Parametric Study of Large-Signal Stability

Relationship Between Time-Domain Waveforms and Mixed Potential Function
• Turn-off without obvious self-turn-on

Value of $\mu_1 + \mu_2$ for Different Cases
• Increase in common source inductance significantly worsens large-signal stability for IXKR47N60C5
• Unconventional capacitance voltage dependence is the other cause of instability

Parasitic Capacitances
IXKR47N60C5
C3M0065090D

IXKR47N60C5
C3M0065090D
Acknowledgements

This work made use of Engineering Research Center shared facilities supported by the Engineering Center Program of the National Science Foundation and the Department of Energy under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program.

We would gratefully acknowledge the sponsorship of our US government and industry partner below.