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  A Communication Testbed for Testing Power 

Electronic Agent Systems

Abstract—Power electronic systems (PES) incorporate complex 

intra-system communication,  which are of vital importance for 

the successful operation of these systems. This paper proposes 

and outlines a communication testbed that will help in the 

development and testing of the communications between the 

components of PES. It allows for the comparison and evaluation 

of different communication methods, such as MQTT, Modbus, or 

User Datagram Protocol (UDP), and for the characterization of 

how these communication protocols perform. 

Index Terms— power electronic systems, communications, UDP, 

MQTT, Modbus 

I. INTRODUCTION  

The electric power grid is transitioning to an electric 
network consisting of power electronic systems (PES), 
communication systems, and intelligent devices. By 2030, the 
prediction is that 80% of the power generated will flow through 
PES [1]. As PES continue to see rapid adoption, the complex 
nature of system interactions and couplings will continue to 
grow. New systems for interconnecting energy sources, energy 
storage, and loads are in rapid development and deployment. In 
adopting these technologies effectively, communication and 
control approaches will be paramount.  

When developing communication for PES, both the 
communication protocol and schema affect the operation of the 
system. The schema defines how the data is interpreted and 
translated in the communication protocol. Examples of 
communication protocols include Message Queuing Telemetry 
Transport (MQTT), Modbus, and UDP. When developing PES, 
the latency, error rate, and message rate of the communication 
protocol and schema are important for the development of the 
PES control. Therefore, quantifying these characteristics is 
important before hardware testing is done. In Fig. 1, a design 
tree is proposed showing the development from concept to 
system prototype by including an additional layer of 
development and testing of the communication network before 
Hardware-in-the-loop (HIL) integration, therefore allowing for 
the communication characteristics to be incorporated into the 
system control. 

In this work, a testbed for communication networks within 
a modular power electronic system of distributed controllers is 
discussed. This testbed provides an opportunity to develop and 
implement new communication and control strategies while 

also evaluating the security, latency, and reliability of the 
solution.  

The testbed is used to evaluate the communication between a 
computational node and a digital signal processor (DSP). PES 
utilize multiple computational nodes that communicate with 
one another and perform various tasks in a system in a 
decentralized manner. These tasks include interfacing with the 
outside world, interfacing with DSPs that control power 
converters, and running system optimization. This testbed 
provides an environment to test and implement the 
communication schemes of these systems. Latency, message 
rate, and error rate can quickly be determined, and PES control 
can be adjusted to fully utilized the communication capability 
available. 

Fig. 2 shows a typical configuration of an agent-based 
power electronics system. These different sub-systems work 
independently to accomplish an overall goal, such as economic 
gain, or grid stability. Agent-based systems provide 
expandability and versatility in deployment and operation and 
have been shown to support power electronic system 
integration [2]-[3]. Each integrated component can be 
controlled by an agent and provide it with specific intelligence 
and decision making.  Agents in these systems must 
demonstrate the ability to be reactive, proactive, and social. 
Agents need to perceive local conditions and react accordingly, 

 
 

Fig.  1. Process flow in the development of power electronic system. 
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initialize and exhibit goal-directed behavior, and interact with 
other agents or external entities [4].   

 

The blue arrows represent the agent communication. 
Message-bus communication can take place over protocols 
such as MQTT, VOLTTRON, or OpenFMB. The black arrows 
represent the agent to component communication. This can also 
happen over a variety of protocols, such as Modbus TCP, 
Modbus RTU, or UDP.  

II. AGENT BASED SYSTEMS 

Various agent-based systems with different communication 
implementations have been presented in literature. These 
systems were reviewed to help determine the communication 
protocol and configuration this testbed should be capable of 
testing. In [2]-[3], agent systems were developed to link power 
electronic converters (PEC) and resources into a single system 
available for dispatch by a central coordinator. The agent 
systems turned single requests into actionable functions 
between different systems and lead to fully coordinated 
systems. Even negotiation techniques have been investigated 
with this type of schema [5]. This can be further complicated 
with a hierarchy of system needs to support the electric grid as 
presented in [6]. Here the work proposes interconnection of 
utility distribution energy management system (DeMS) to 
power electronic systems through OpenADR and a home 
energy management system. Hence, the driving features 
required of the power electronic system will create the 
necessary communications framework, protocol, and schema 
for the communication network.  

In previous work, a plug-and-play framework solution was 
developed for conversion stages in a PES. This allows control 
and data to be transferred from a digital signal processing (DSP) 
controller to a central controller regardless of the converter type 
or design [5]. In Fig. 2, the communication between a DSP and 

a middle layer (computer node or Raspberry Pi) is presented. 
Communication between the computer node and DSP is 
achieved using a standardized implementation of UDP. The 
communication data includes specification, available control 
modes, and converter ratings to support auto-configurability 
[5]. 

  

Within the computer node lies an agent framework, a locally 
hosted broker (message bus) on a single computational node is 
used by the agents for MQTT communication. The framework 
utilizes 4 unique agents: 1) the Source/Load agent that 
communicates and interacts with interconnected sources or 
loads, 2) the Converter agent which communicate to the 
converter DSP through UDP, 3) the Intelligence agent which  
determines the commands that will be dispatched to the 
converter and source/load and 4) the Interface agent which is 
used to link the computational node to a central controller. In 
this architecture, the computer node also communicates via 
MQTT to the central controller but can support other protocols.  

III. COMMUNICATIONS TESTBED 

A. Overview 

For evaluating different functionalities and communication 
protocols, a communication testbed must be able to emulate the 
schema and protocol of the different PES components and 
evaluate the performance of the communications. This provides 
a rapid means to test various case scenarios, debug setup 
challenges with communication configurations, and establish 
communication baselines for comparison. For effective results, 
the network configuration must be the same as the PES network 
implementation. Therefore, the testbed utilizes two separate 
networks for the PES communications emulation, and one for 
the central computer to interact with the Raspberry Pi’s. The 
code deployed is in the form of agents in a Raspberry Pi 
network, with different protocols able to be used as the DSP to 
computer node communications and MQTT for the 
communications between computer nodes and central 
computer. Custom schemas for the DSP to computer node and 
MQTT communications can be defined, deployed, and tested 
using the developed graphical user interface (GUI)  . 

 
Fig.  2. Basic Agent-based communication implementation of a PES. 

Some or all these example agents could be incorporated  

 
Fig.  3. Example integration with real hardware [8]  



As presented, three sets of two Raspberry Pi 3B models are 
used to test the computational node to DSP communication, 
with one set of Raspberry Pi’s representing interconnected 
DSPs and the other the computer nodes. This communication 
link is an isolated ethernet layer to provide direct link between 
the computer node and DSP simulator. The computational 
nodes (Raspberry Pi’s A/B/C) share an ethernet switch for 
intercommunication with MQTT. An Arduino Uno is 
interfaced with the general-purpose input/output (GPIO) pins of 
the Raspberry Pi’s. This allows for timing experiments, such as 
latency testing, without requiring Raspberry Pi clock 
synchronization. The following is a list of the hardware used in 
the testbed, pictured in Fig. 4:  

• Raspberry Pi 3B (3) – Computer nodes 

• Raspberry Pi 3B (3) – DSP Simulator nodes 

• Arduino Uno 

• Network Switch (2) 

• MacBook Pro running Ubuntu 16.04 (Code 

Deployment) 

• MacBook Pro running Ubuntu 16.04 (Central 

Computer)  
 

 

 
 

Since the Raspberry Pi’s utilize more than a single ethernet 
connection, USB to ethernet adapters were employed to support 
additional communication layers as shown in Fig. 6. The 
Raspberry Pi automatically adopts an eth0, eth1, and eth2 
naming convention for communication ports allowing for rapid 
adoption and evaluation of the communication port. In this 
case, eth0 is used for the UDP communications, eth1 for the 
communication network to support automatic deployment of 
code across the network for testing, and eth2 for MQTT 
communications between computer node and central computer.  

 

B. Communication Networks 

The setup of the testbed uses a Code Deployment Computer 
(CDC) running Ubuntu 16.04 that is connected to all the 
Raspberry Pi’s. This network is used for detecting and auto-
deploying code to the Raspberry Pi’s. Each node on this 
network has a static IP address defined with the form 
192.168.0.X (eth1). The netmask is 255.255.255.0, which 
limits the communication network addresses 192.168.0.0 – 
192.168.0.255. The communication for eth0 is always set to 
192.168.53.X for the computer nodes and the DSP simulators 
(as the communication link is isolated). The MQTT 
communication network is preconfigured as well with 
192.168.99.X and netmask 255.255.255.0.   

The code deploy network allows the following tasks to be 

facilitated without interfering with the communication 

network.  

• Detecting connected Raspberry Pi’s through 

pinging 

• Transferring scripts to Raspberry Pi’s through a 

network file system (NFS) 

• Executing Python scripts on the Raspberry Pi’s 

through secure shell (SSH) commands 

• Remote access setup for troubleshooting through 

Virtual Network Computing (VNC) 

 

By implementing the communication networks with the 

same configuration as physical PES to test the system 

behavior, the communication behavior can be determined in 

different real-world situations, including cyber-attacks. MQTT 

supports secure socket layer (SSL) encryption for secure 

communication, and the testbed can be configured to 

incorporate this into its implementation. This allows cyber-

attacks to be emulated, and the resiliency of the 

communications to these attacks can be determined.  

 

C. Evaluation techniques for establishing quaility of 

communications 

Two metrics were established as important for 

communication: 1) maximum number of communication 

 
Fig.  4. Photo of the testbed setup during latency testing 

 
Fig.  5. Diagram of the communications testbed with Raspberry Pi 

nodes, Arduino Uno, central computer, and code deployment computer 

 

 
Fig.  6. Diagram of the different communication connections to support 

testing. 



messages without data loss and 2) latency associated with the 

communicating and processing of messages.  

1) Maximum Speed of Communications without Data Loss 

The error rate of messages with the UDP communication 

socket needed to be determine, as UDP is a “connectionless” 

communication protocol that does not ensure data is received. 

Other protocols, such as Modbus or MQTT, have incorporated 

data verification, and therefore do not need their error rate 

tested. However, this verification limits their maximum 

messages per second. 

To determine the maximum UDP messages per second, a 

python script was developed on the testbed to send a specified 

number of UDP messages per second. The messages per 

second started at 300, and incrementally increased to a 

maximum of approximately 9000 messages. The sent and 

received data was compared to determine how many messages 

were properly received.  

 

              𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =  
𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑠𝑒𝑛𝑡−𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑠𝑒𝑛𝑡
      (1) 

 

2) Anticipated Speed of Communications 
The speed of the data transfer from point to point is 

important, as it can be a limiting factor in PES control. Two 
factors limit the speed in which data is sent and processed, the 
network latency and the computational speed of the Raspberry 
Pi 3B. The data flow of a UDP message is shown in Fig. 8. The 
data flow is as follows: 

• Push button: The action taken by user or agent to 
initiate sending a message.  

• Encode Message (tencode): The message data is encoded 
into 32 bits that contains the category, subcategory, 
and value. (i.e. Control/Output Voltage/120) 

• Send/Receive Message (tlatency): The 32-bit data is  
processed, sent, and received over the network using 
the “socket” library in Python 3. 

• Decode Message (tdecode): The 32 bits are decoded into 
the category, subcategory, and data value 

 
 

The total message time can be computed as: 

 

              𝑡𝑚𝑒𝑠𝑠𝑎𝑔𝑒 =  𝑡𝑒𝑛𝑐𝑜𝑑𝑒 + 𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦 + 𝑡𝑑𝑒𝑐𝑜𝑑𝑒                  (2) 

 

 

To measure the times accurately, GPIO pins of the Raspberry 
Pi’s were used. Based on the value being measured, a GPIO pin 
switched between “HIGH” and “LOW.” The pulses were 
measured by an Arduino Uno microcontroller. This allowed the 
Raspberry Pi’s to not be synchronized which latency testing. 
The accuracy of the Arduino was verified using a Yeapook 
ADS1013D oscilloscope, as demonstrated in Fig. 5, which 
shows the testbed during latency testing. Based on testing, the 
average time for a Raspberry Pi 3B to activate a GPIO pin was 
<2µs, and therefore was disregarded due to its small value.   

IV. RESULTS 

This communication testbed was used to determine the 
maximum speed and potential latency associated with using the 
Raspberry Pi 3B and developed UDP schema. The UDP IPv4 
implementation requires 32 bits for the sending and receiving 
address, 32 bits for the length and checksum data, and 32 bits 
for the PES data. Based on the Raspberry Pi’s maximum 
documented ethernet networking speed of 10 mbps, this gives 
a theoretical limit of 104167 messages/second [7]. The 
measured messages per second verses the error rate is shown in 
Fig. 9.  

 

 
This test showed that the Raspberry Pi can send 

approximately 9000 messages per second, well short of the 

network capability. However, when messages exceeded 3325 

per second data loss was observed. Fig. 10 shows the overall 

message time tmessage captured while sending 3000 messages 

with no loss. Table I shows the breakout of the communication 

components that represent the message. The average overall 

message time was measured to be 506 µs. The maximum 

message rate is limited by the time required to encode the UDP 

message, as:  

 

             
1 𝑚𝑒𝑠𝑠𝑎𝑔𝑒

𝑡𝑒𝑛𝑐𝑜𝑑𝑒
=

1 𝑚𝑒𝑠𝑠𝑎𝑔𝑒

112 µs 
 =  8928 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠/𝑠𝑒𝑐𝑜𝑛𝑑        (3) 

 

and network latency as: 

 

             
1 𝑚𝑒𝑠𝑠𝑎𝑔𝑒

𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦
=

1 𝑚𝑒𝑠𝑠𝑎𝑔𝑒

292 µs 
 = 3424 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠/𝑠𝑒𝑐𝑜𝑛𝑑         (4) 

 

 
Fig.  7. The data flow of messages with the custom UDP 

communication scheme   

 

 
Fig.  8. Messages sent per second verses error rate   
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In this setup, the network latency plays the largest role in 

limiting the maximum message rate (which is limited by the 

ethernet port on the Raspberry Pi). However, clearly the 

computational capabilities of the Raspberry could also impose 

additional limits based on other computational needs for the 

agent system.  

 

TABLE I.  AVERAGE TIMES 

tencode 112 µs 

tlatency 292 µs 

tdecode 102 µs 

tmessage 506 µs 

 

I. CONCLUSION 

This paper covers the need, requirements, and development 
of a testbed to help aid the deployment of an agent system 
supporting power electronic systems. The testbed streamlines 
the process of communications evaluation and testing with auto 
deployment functionality.  

Furthermore, this paper demonstrates use of the testbed to 
examine a new UDP communication schema implemented with 
a Raspberry Pi 3B. The maximum error-free message rate and 
message time of this communication scheme was found with 
the testbed and quantified.  

Future work with this testbed will include validating the full 
communication messaging, from master controller to end node 
to establish baselines for the ability to respond to controls 
quickly. This work will encompass MQTT, UDP, and Modbus. 
Future work also includes testing with different computer 
platforms, such as the Raspberry Pi 4, which has faster network 
speed and more computational power. By using newer 
hardware, the data transfer limits on low-cost single-board 
computers for future PES can be validated and implemented. 
Last, cybersecurity protocols, such as SSL for UDP, will be 
explored. 
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Fig.  9. UDP message time tmessage over 3000 messages 
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