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Abstract—This paper presents further advances on a novel
power system oscillation control based on step-wise changes in
power output of electronically-interfaced resources (EIR). This
discrete control technique is used to significantly reduce the
amplitude of multiple modes in large-scale systems. The mathe-
matical formulation of the discrete electromechanical oscillation
control (DEOC) is presented, including the determination of
the required discrete power injection/absorption, and optimal
switching conditions. Time-domain simulations in a 9-bus and
a 39-bus systems validate the effectiveness of the proposed con-
trol. Through DEOC, emerging power technologies can actively
participate in the power system level control, recognizing their
technical limitations. Thereby, the system dynamic response is
substantially improved regarding electromechanical oscillations,
and new effective controllers are incorporated into the grid.

Index Terms—inter-area oscillations, oscillation damping, dis-
crete control, power system control, power system stability.

I. INTRODUCTION

Global environmental concern all over the world has led
to prioritizing renewable, carbon-free sources of energy over
conventional generation. Therefore, electrical power systems
have been progressively uptaking renewable generation with
increasing penetration from non-conventional renewable en-
ergy (NCRE), such as wind and solar [1]. This transition,
although desirable, has technical consequences in the operation
of the electrical grid. A relative reduction of system inertia
and intrinsic variability of NCRE may cause larger and more
frequent frequency deviations [2] and recurrent electromechan-
ical oscillations. Particularly, local and inter-area oscillations
are recognized to become more critical to control in order to
guarantee system reliability and resiliency [3].

Power system stabilizers (PSSs) are deployed to improve
oscillation damping by adding a supplementary signal to the
excitation systems of selected synchronous generators (SGs).
However, these PSSs are not always suitable to handle multiple
modes of oscillation [4], situation that may be worsened
in the upcoming power grid due to features that can ease
the appearances of multiple oscillations [5]. Nowadays, the
massive deployment of phasor measurement units and the
existence of EIRs such as wind turbine generators, utility-scale
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PV plants, flexible a.c. transmission systems, high voltage d.c.
lines, controlled loads or energy storage systems (ESS) can
be exploited to tackle electromechanical oscillation problems
[6], [7]. Unfortunately, existing solutions for enabling wind
farms and solar power for damping control require power
curtailment, leading to under-utilization of available energy
potential, and undesired high cost of operation of NCRE. In
addition, the installed capacity of ESS such as batteries and
flywheels is not yet significant in most grids to be used for
damping control purposes.

The design of new control systems and the expansion
of the grid control capabilities have been identified as key
goals towards developing a highly renewable power grid [8],
[9]. Discrete–bang-bang type–control approaches to handle
oscillations have been proposed in the past. Yet, these research
efforts are based on oversimplified equivalents [10], [11] that
are not suitable for large-scale applications, and assume a
unique mode of oscillation that is favorably controlled by
a controllable component right in the oscillation path [12]–
[14]. These fundamental considerations have made these works
inapplicable to real systems. Recently, a new approach to
discrete control has been proposed [15]. This discrete control
approach is promising since it aims to enable emerging power
technologies for dynamic control actions while taking into
account their particular limitations. In this way, the grid can
gain a large number of new effective controllers that have been
excluded due to their limited or no control capabilities under
continuous control schemes.

This paper presents important advances in oscillation control
based on discrete actions of emerging power technologies,
such as EIRs. These elements are considered to work on top
of traditional oscillation damping controllers. The DEOC acts
upon the system through multiple controllable components
(CCs) and is able to handle large-scale systems with multiple
excited oscillation modes. In order to do so, a momentary
shifting of the system equilibrium point is performed at
specific switching times that are computed using a switch-
ing function and the system’s oscillating energy [16]. The
remainder of this paper is structured as follows. Section II
provides the theoretical development of the DEOC including
the general formulation of the problem, determination of
discrete power injection by CCs, and switching conditions.
Section III presents the study cases to validate the control
performance. Conclusions are presented in Section IV.978-1-6654-9921-7/22/$31.00 ©2022 IEEE
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II. DISCRETE ELECTROMECHANICAL OSCILLATION
CONTROL (DEOC)

The essence of the DEOC is to enable discrete control
mechanisms that inject/absorb active power at a given set
of buses. This set corresponds to buses whose connected
elements (EIRs) can step-wisely adjust their power output,
such as energy storage systems, PV solar generation, and
wind turbines. To lay the DEOC foundations for a general
formulation, for now, a linear model is considered.

A. General formulation

Consider m CCs with their active power output given by
Pref = P 0

ref + ∆P
(
µton − µtoff

)
, with Pref , P

0
ref ,∆P ∈

Rm. P 0
ref is the initial power set-point vector, ∆P is a vector

that contains a predefined quantity for every CC, and must be
determined based on both the particular characteristic of the
system under study and the number of CCs, µτ = 1,∀t > τ
is the unit step function, and ton, and toff the switching
times with toff > ton. Now, consider a system with ng

SGs represented by a classical model, and the dc load flow
formulation to represent the grid of nb buses. By eliminating
algebraic variables, the model system becomes:

ẋ︷︸︸︷[
δ̇
ω̇

]
=

Asys︷ ︸︸ ︷[
0 ωsIng

− 1
2H

−1Ba 0

] x︷︸︸︷[
δ
ω

]
+

[
ωs1ng

1
2H

−1(Pm +BbPL −BcPref )

]
(1)

for more details refer to [15]. By inspection, the state matrix
Asys has purely imaginary eigenvalues, then the system be-
haves as an undamped multidimensional harmonic oscillator.
Note that Pref depends on ∆P , ton, and toff . If t < ton
or t > toff , the system equilibrium point is defined as
xe = [δe ωe]

T , with δe = B−1
a (Pm + BbPL − BcP

0
ref ),

and ωe = 1ng . Otherwise, the equilibrium point is shifted
to xce = [δce ωce]

T (ce: controlled equilibrium), with
δce = δe −B−1

a Bc∆P , and ωce = ωe = 1ng
.

Initially, the system is considered to be in steady-state at the
equilibrium point xe, but the state variables are shifted away
from the equilibrium because of a short-circuit. At time t0 the
short-circuit is cleared and the states at that time are x(t0) =
x0. A similarity transformation is used to determine the time
evolution of the state variables and its derivative ∀t ∈ [t0, ton],
given by:

x(t) = V eΛ(t−t0)V −1(x0 − xe) + xe (2)

ẋ(t) = V ΛeΛ(t−t0)V −1(x0 − xe) (3)

where V = [v1, v2, . . . , vn] is the full rank matrix of right-
eigenvectors, each eigenvector vi is associated with its corre-
sponding eigenvalue λi, Λ = V −1AsysV is a diagonal matrix
that contains all distinct and different to zero eigenvalues, i.e.,
Λ = diag{λ1, λ2, . . . , λn}, and n is the total number of states,
which in this case is n = 2ng .

As shown in Fig. 1-(a), after the short-circuit, the system
will exhibit a periodic trajectory (black dashed line) centered at
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Fig. 1. Graphical description of system trajectories with DEOC: (a) optimal
solution, (b) sub-optimal solution.

xe. The DEOC is activated at some point along the trajectory
when x(t = tst) = xst (st: switching time), and the system
will shift its trajectory to another periodic orbit centered at the
controlled equilibrium point xce–described by the red dashed
line in Fig 1. In the optimal case, xe belongs to the controlled
orbit, then toff is set to t when x(t) = xe. The entire DEOC
operation will lead the system through the blue trajectory,
ultimately eliminating the oscillation. Fig. 1-(b) shows a case
when the switch-on is performed slightly after x(t) = xst.
In this case, xe would not belong to the controlled periodic
trajectory and the oscillation cannot be annihilated. If the
switching is not performed at the optimal time, a sub-optimal
trajectory near the equilibrium point xe will the desirable. In
this case, an appropriate way to define the switch-off time is
needed (described in subsection II-C).

B. Power injection from controllable components

The state of the system, right after the disturbance is cleared,
will lead to the excitation of the system modes. These will
be excited with different intensities depending on both their
participation factors pki = wikvik and the initial condition
itself. The explicit solution for the k-th state variable ∀t ∈
[t0, ton], this is before the first discrete action, is written as:

xk(t) =

n∑
i=1

eλi(t−t0)wT
i (x0(k)− xe(k))vik (4)

where wT
i , vi ∈ Rn are the i-th left and right eigenvectors

related to the eigenvalue λi.
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Considering that each SG is described by a classical model,
a power system with ng synchronous generators (including one
at the infinite bus) will have n = 2(ng − 1) state variables.
These states will exhibit only a few dominant modes in their
dynamic response. The main goal of the DEOC is to annihilate
the oscillations associated with those modes, thus significantly
reducing the amplitude of the oscillatory response. Along these
lines, one possible solution to tackle multi-mode systems is
presented. This solution pursues oscillation annihilation by
progressively targeting one mode at a time.

Without loss of generality, let us assume the oscillation of
the k-th mode is targeted for elimination. For that particular
mode one can define the projection P = MMT ∈ Rn×n

over the subspace span{q1, q2} ∈ Rn×2, with M = [q1 q2].
Here, q1 = Re(vk) and q2 = Im(vk) are the basis of
the 2-dimensional projected space, with vk being the k-th
eigenvector corresponding to the eigenvalue λk. The projection
of a vector x ∈ Rn over span{q1, q2} is given by Px. Now, the
representation of the projected vector in the subspace spanned
by {q1, q2} is determined as:

α =

S︷ ︸︸ ︷
(MTM)−1MT MMT︸ ︷︷ ︸

P

x (5)

The linear transformation S : Rn → R2 can be decomposed
into two block matrices S = [S1 S2] with proper dimensions,
since x = [δ ω]T . In a similar fashion, an orthogonal
subspace to span{q1, q2} is defined as: N = Null(M) =
{y ∈ N | My = 0} , N ∈ Rn×(n−2). The projector over the
null space of M is given by Pn = NNT . The projected vector
is Pnx, and its representation over the projected subspace
corresponds to:

αn =

Sn︷ ︸︸ ︷
(NTN)−1NT NNT︸ ︷︷ ︸

Pn

x (6)

Similarly, the linear transformation Sn : Rn → R(n−2) can
be separated into two block matrices Sn = [Sn1 Sn2] with
proper dimensions, since x = [δ ω]T . The orthogonal pro-
jections P and Pn are very useful to target one mode at a time
without exciting others due to the shifting of the equilibrium
point. As shown in Fig. 2, to annihilate the oscillation of the
dominant mode, the DEOD will affect the equilibrium point
over span{q1, q2} and there will be no displacement over the
null space of M . This means that the projected orbits related
to any mode but the targeted k-th mode will have no shifting
in the equilibrium point due to the DEOC.

Determining the power injection by each CC to achieve a
desired shift of the equilibrium point is a static problem that
does not depend on the dynamic trajectory of the system. Due
to this, the dc load flow formulation is considered as follows:[

θ
δ

]
=

[
X11 X12

X21 X22

]
︸ ︷︷ ︸

B−1
0

[
−PL +A∆P

PG

]
(7)

xe

Equilibrium point
displacement in the subspace

spanned by {q1, q2}
xce for

different
values of K

(a)

xe xec

No displacement
in the subspace
spanned by col(N)

(b)

Fig. 2. Graphical description of the representation over the projected
subspaces: (a) span{q1, q2} ∈ R2, and (b) span{col(N)} ∈ Rn−2.

where θ ∈ Rnb in radians are the bus voltage angles, B0 ∈
Rng+nb is the system susceptance matrix including generator’s
series transient reactance, X11, X12, X21, X22 are the block
partitions of B−1

0 with proper dimensions, A ∈ Rnb×m is
an incidence matrix composed of zeros and ones to adjust
the size of ∆P , such that A∆P ∈ Rnb−ng , by setting zero
to entries related to buses where CCs are not connected,
and PG ∈ Rng is the SG injection power vector. Both the
original and controlled equilibrium points are composed of
SG loading angle and speed as follows: xe = [δe ωe]

T , and
xce = [δce ωce]

T = [δe+∆δ ωe]
T . Here ∆δ represents the

shifting of the equilibrium point with respect to the original.
Following (5) and (6), the projected displacement of the

equilibrium point onto span{q1, q2} and its orthogonal sub-
space are given by ∆α = S1∆δ and ∆αn = Sn1∆δ, respec-
tively. Impose a sufficient condition to have zero displacement
onto the null space of M : αn = 0 = Sn1∆δ. By solving for
∆δ, the required controlled equilibrium point xce is defined.
This solution is given by:

∆δ = Kd̄ ∈ Null(Sn1) : |d̄| = 1 (8)

where K is a constant real parameter, and d̄ is the unit
direction vector of displacement of the equilibrium point to
ensure αn = 0. As shown in Fig. 2-(a), different values of K
will lead to different orbits around the controlled equilibrium
xce. A proper value of K should be defined, depending on the
system, to avoid excessive amplitude of the controlled orbit.

Replacing ∆δ into eq. (7), and solving for ∆P , leads to:

A∆P = X+
21(δc −X22PG) + PL (9)
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where X+
21 is the pseudo-inverse of the block matrix X21.

With this specific power injection ∆P , the equilibrium point
is only displaced on the representation over the projected
subspace span{q1, q2}. It is important to mention that once the
oscillation of the targeted dominant mode has been annihilated
through DEOC, the process can be repeated to shift the
equilibrium point on the representation over the projected
subspace span{q1, q2}– now related to the second dominant
mode and so on.

C. Switching conditions

Given the states x0 right after a short circuit is cleared, the
dynamic evolution of the system is defined by equations (2)
and (3). Rearrange the equations as follows:

V −1(x− xe) = eΛ(t−t0)V −1(x0 − xe) (10)

Λ−1V −1ẋ = eΛ(t−t0)V −1(x0 − xe) (11)

By pre-multiplying eq. (10) by (x − xe)
T (V −1)∗ and eq.

(11) by ẋT (V −1)∗(Λ−1)∗, and adding them up, lead to an
hyper-ellipsoid in the plane x− ẋ:

(x− xe)
TD(x− xe) + ẋTEẋ = 2∆xT

0 D∆x0 (12)

where D = (M−1)∗M−1, E = (M−1)∗(Λ−1)∗Λ−1M−1,
∆x0 = x0 − xe, and the symbol ∗ corresponds to the
conjugate transpose. Note that D and E are real positive
definite matrices. This hyper-ellipsoid defines the periodic
orbit around the equilibrium point xe due to the initial
condition x0. To successfully apply the DEOC, ∆P need to
be switched-on at an specific time tst. In the same way, at
toff > tst the controlled elements are switched back to zero,
eliminating the oscillation related to the targeted mode if
performed at the optimal time. Consequently, appropriate ways
to determine these specific switching times need to be defined.

1) Switch-on time: Consider that the states are x(tst) =
xst, right after ∆P is discretely switched on. The dynamic
trajectory of the system is given by:

x(t) = V eΛ(t−tst)V −1(xst − xce) + xce (13)

ẋ(t) = V ΛeΛ(t−tst)V −1(xst − xce) (14)

Rearranging and manipulating the equations in the same
fashion as in (10)-(12), lead to another hyper-ellipsoid centered
at xce, that describes the system trajectory in the plane x− ẋ:

(x− xce)
TD(x− xce) + ẋTEẋ = 2∆xT

stD∆xst (15)

where ∆xst = xst − xce. To ensure a successful controlled
operation, the switch-on should be performed only when xe

belongs to the controlled trajectory. Thus, using equation (15)
and setting x = xe, and ẋ|x=xe = A(xe − xce), lead to:

∆xT
ce(D +ATEA)∆xce = 2∆xT

stD∆xst (16)

where ∆xce = xe − xce. Whenever x = xst satisfies equation
(16), ∆P should be switched on. Therefore, the following
switching function:

h(x) = 2(xe − xce)
TD(xe − xce)

− (x− xce)
T (D +AT

sysEAsys)(x− xce) ∈ R (17)

can effectively determine the switching time when h(x) = 0.

2) Switch-off time: An energy-based approach is used to
ensure that the switch back to the equilibrium point xe is
done appropriately. The oscillation energy is defined as the
summation of the individual kinetic energy of the SGs:

Ek(t) =

ng∑
j=1

Hjωs∆ω2
j (18)

where ∆ωj is the speed deviation of SG j in p.u., and Hj is
the inertia constant of SG j in s. Note that after a disturbance,
the speed trajectories describe the oscillation energy defined
by equation (18) such that Ek(t) > 0, ∀t > t0. If damping
is neglected, Ek oscillates permanently. The switch-off time
toff should be computed such that Ek is minimum. This
guarantees that the oscillation in the state variables will be
close to the equilibrium point—hence the oscillation amplitude
is considerably reduced. If performed at the optimal time,
the switch-off is performed exactly at the original equilibrium
point, thus completely annihilating the targeted oscillation.

For determining the switch-off time, the integral of Ek(t)—
also defined as action [16]—over a moving time window
[t1, t1+T ] is determined. Whenever the integral is minimum,
the system is reaching a minimum oscillating energy Ek,
and it is the moment to switch-off. This integral needs to be
computed for each t1 > tst after the switch-on time. Also, an
appropriate time window T needs to be considered to capture
the oscillating energy dynamics.

III. SIMULATION RESULTS AND ANALYSIS

Simulations are performed in a 9-bus system and a 39-
bus system [17]. Grid parameters are obtained from the
MATPOWER library [18]. No additional controllers are con-
templated to evaluate the sole action of the proposed DEOC.
As wind farms, solar plants, and ESSs are considered, the
proposed DEOC will only act upon CCs connected to partic-
ular buses, located within the grid based on energy potential
or technical considerations. However, in an initial exploratory
aim to account for full controllability, this paper assumes
controllable components deployed at all non-generator buses.
In future research, this assumption will not be required.

A. 9-bus system

A self-cleared three-phase fault is applied at bus 8 with a
total duration of 150 ms. The system dynamics are dominated
by two electromechanical modes: one oscillation between
G1 (slack bus) and G2-G3 with a corresponding eigenvalue
λ1 = j7.35 (1.17 Hz), and another between G2 and G3 with
a corresponding eigenvalue λ2 = j13.69 (2.18 Hz). The fault
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at bus 8 mostly excites the 1.17 Hz mode. Because of this, the
DEOC is performed first to tackle that specific mode. In order
to do so, the equilibrium point is shifted only on the projected
subspace related to that mode (see Fig. 3-(a)).

By using the switching function defined in eq. (17), the
switch-on time is ton1 = 0.708 s. Next, every time step after
ton1, the integral of Ek(t) is computed over a moving time
window with a width of T = 1 s. When the first minimum is
found, the switch-off is activated; this is at toff1 = 0.796 s.
A minimum integral denotes that the oscillation is close to the
original equilibrium point, thus the oscillation associated with
this mode is almost annihilated. Note that after the annihilation
of this oscillation, the system is dominated exclusively by the
2.18 Hz mode. As mentioned before, this mode corresponds to

an oscillation between G2 and G3. From Fig. 4 it is noticeable
that just after this first on-off cycle, both SG frequencies are
in counter-phase.

Then, the targeted mode is changed to the one with a
frequency of 2.18 Hz. Now, it is desired to shift the equilibrium
point only on the subspace associated with this mode. As
shown in Fig. 3-(b), the controlled orbit centered at xce2 does
not induce any displacement on the already tackled 1.17 Hz
mode. Next, the second switchings are at ton2 = 1.000 s and
toff2 = 1.051 s. With this second operation, a sub-optimal
annihilation of both modes is performed. Even though both
modes are not completely eliminated, the SGs frequency time
evolution shown in Fig. 4 validates the performance of the
DEOC with a reduction of oscillation amplitude greater than
95% in both modes. The total actuation of the DEOC is 0.343
s. Note that in a practical operation scenario, SG dampers and
PSSs would take care of the remaining oscillation.

B. 39-bus system

A self-cleared three-phase short-circuit is considered at bus
9 with a total duration of 150 ms. In a real setup, online
measurement and oscillation identification techniques can be
used to determine the most dominant modes, which will be
targeted with a given order. In this simulation, the order is
defined as shown in Table I, based on the amplitude of each
excited mode. A moving time window with a width of T = 1
s is considered to compute the integral of Ek(t).

TABLE I
39-BUS SYSTEM MODES AND DEOC SWITCHING TIMES

Mode Frequency (Hz) DEOC order ton (s) toff (s)
1 0.62 1 0.607 0.807
2 1.53 2 1.456 1.611
3 2.52 3 1.668 1.756
4 1.75 4 2.199 2.286
5 1.72 5 2.823 2.887
6 2.83 - - -
7 2.75 - - -
8 2.37 - - -
9 1.29 - - -

Simulation results are shown in Fig. 5, where the speed of
all SGs is compared with the case without DEOC. Fig. 5-
(a) shows the DEOC application when the switching function
derived in equation (17) is used. Even though, this function
ensures that the original equilibrium point xe belongs to the
controlled trajectory, it does not give a specific time when
this is going to happen. In a multi-mode system, this optimal
time may exceed an expected time for control purposes.
Consequently, only a sub-optimal solution is found in a short
time to perform each switch-off. Because of this, a complete
annihilation of each dominant mode cannot be achieved within
a reasonable time frame for this system.

However, a local search is done around the switch-on time to
shed light on this issue. After a few tries, adequate switch-on
times have been found that almost annihilate the oscillations.
The result is shown in Fig. 5-(b) using the following adjusted

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on April 07,2023 at 03:21:46 UTC from IEEE Xplore.  Restrictions apply. 



(a)

(b)

Fig. 5. 39-bus system dynamics: (a) sub-optimal solution by using h(x) = 0,
(b) optimal solution by ensuring xe belongs to the controlled trajectory in an
adequate time to switch off.

switch-on times for the 5 targeted modes: 0.642, 1.497, 1.678,
2.165, and 2.800 s. The authors recognize that further explo-
ration is needed to acquire a formal theoretical foundation
to guarantee this condition. An additional time-dependent
constraint to the switching function h(x) might suffice to
improve the DEOC performance. The remaining oscillations
after the DEOC are in essence the initially exciting modes that
are not tackled. This result validates the effectiveness of the
proposed control and its application to handle a large-scale
system with a multi-mode dynamic nature. A total oscillation
amplitude reduction greater than 90% of all five dominant
modes is achieved.

IV. CONCLUSION

This paper presents significant advances in the discrete
electromechanical oscillation control problem. The DEOC
aims to incorporate EIRs into the control of the dynamic
response of the system. These controllable components are
considered to provide step-wise changes in their power output
to transiently shift the system equilibrium point. By doing so,
the oscillations of dominant excited modes are proposed to be
progressively annihilated. Orthogonal projections are used to
define the required power output of every CC. A switching
function is derived to define the switch-on time. In the same
way, the integral of the oscillation energy is used as a merit
function to establish the switch-off time. The incorporation of
the DEOC is validated in a 9-bus and a 39-bus systems. To
fully explore the theoretical implications of CC locations, a
CC is assumed to be connected to every non-generator bus.
Simulation results are categorical: the oscillation amplitude
of dominant modes is significantly reduced (greater than
90%) with a short time of DEOC actuation (<2.3 s). These
results reveal that the proposed approach can handle large-
scale systems, with multi-mode dynamics. The next step in

developing this control technique is to achieve similar results
only considering a subset of non-generator buses.
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