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Abstract—This work presents a data-driven analysis of min-
imal length necessary for coherency detection considering a
recursive form of the typicality-based Data analysis (TDA). It
proposes a methodology that encloses the observation of the
variance of the typicality (τ ) to asses the minimal window length
necessary to determine the coherent buses, where the properties
of the TDA approach and the groups of buses are iteratively
calculated at every new data point sampled. Once the variance
of each group reaches a certain value, the minimal window
length is determined. Besides, this method preserves the TDA
characteristics of using exclusively measurements, not requiring
pre-determination of number of groups, group centers or cut-off
constants. The method is applied to the well know 2-area Kundur
test system, allowing to corroborate its effectiveness and draw
conclusions regarding minimal window length dependence on the
slowest inter-area mode.

Index Terms—Coherency, Synchrophasors, Data-driven meth-
ods, Typicality, Clustering

I. INTRODUCTION

Coherency analysis is an important tool for power system
operators, as complex models can be reduced to simpler
equivalent ones and important parameters together with se-
curity margins can be verified. The dependence on models
for coherence detection can be a critical factor, as power
systems become more and more complex caused by the
integration of inverter-based generation (IBG), making the
model-based methods slower and more uncertain. Fortunately,
power systems are also becoming better observed thanks to
the installation of phasor measurement units (PMUs) that in
turn, forming wide-area monitoring systems (WAMS) which
provide a high-dimensionality data set for purposes of iden-
tifying coherency and other features of the operators’ con-
cern. Among the opportunities provided by reduced models,
response to ringdown disturbances are accordingly used for
tuning controllers in areas or sub-areas belonging to the same
or different bulk interconnected power grids.

Different actions taken by operators after large disturbances
are dependent on the knowledge of coherent groups, such as
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coordinated control [1]. Besides the knowledge of coherent
groups, it is also important that this information is provided
as fast as possible, so the action taken by the operator is as
efficient and minimal as possible. To this extent, it is crucial
to determine the coherent groups with the help of little data
as possible, that is, with the shortest window of measurements
possible.

Investigations usually consider a fixed window length be-
tween 10 and 20 seconds, aiming to accommodate two periods
of the slowest modes and additional time due to the transitory
phenomena following a disturbance [2]–[8]. These works
briefly discuss the applicability of the methods for smaller
windows, encouraging to the researcher to invest more efforts
and discussion in providing solutions for such reductions.

In [9], the authors propose a window length ranging from 20
to 60 seconds to accommodate all inter-area modes and also
to perform controlled power system separation, taking into
account three stages of such problems, namely: offline analy-
sis, online analysis and real-time control stage. The first stage
identifies elementary generation groups and devises control
strategies for post-separation. The online stage performs modal
analysis of synchrophasors for predictive separation points
in the system, whereas the real-time control stage calculates
a separation-risk index (SRI) based on time-synchronized
measurements for finding the best time of separation. Mean-
while this method is comprehensive, other applications require
smaller time windows since the higher penetration of IBG in
the system has diminished the available time for operators’
response.

The authors in [10] propose a stability criterion-based
method to determinate the smaller window length, where
the angular deviation among two recent measured vectors of
generators’ distances. This is calculated by their cosine dissim-
ilarities and compared with heuristically-defined thresholds. If
the value of the distance among vectors is smaller than the
threshold, the window length is found. The authors claim that
the window length is affected by the threshold choice that it
has a range from 0.01 up to 0.1, where thresholds closer to the
lower value present higher resolution of the groups, whereas
values closer to the upper value exhibit more robustness to

20
22

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 S

m
ar

t G
rid

 S
yn

ch
ro

ni
ze

d 
M

ea
su

re
m

en
ts

 a
nd

 A
na

ly
tic

s (
SG

SM
A

) |
 9

78
-1

-6
65

4-
98

23
-4

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

SG
SM

A
51

73
3.

20
22

.9
80

60
12

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on April 07,2023 at 03:23:36 UTC from IEEE Xplore.  Restrictions apply. 



temporal changes.
The remainder of this work is organized in the following.

Section II presents fundamental concepts of coherency and
empirical data analysis required for the methodology pre-
sented in Section III. Section IV shows the application of the
methodology to the Kundur two-area system, unveiling the
characteristics and advantages of the method. Finally, Section
V discusses the key findings and future works to enhance the
method.

II. FUNDAMENTALS

A. Coherency

Coherency is defined as the behavior of generators swinging
together in response to a disturbance [11], with minimal
distances between their responses. This swing behavior can
be observed in angle (δ) and frequency (f ) measurements;
likewise it can be derived from the linearized model analysis
where the frequency of oscillatory modes and their participa-
tion factors indicate which generators are coherent to each
other. Both approaches can be extended to non-generation
buses and become less clear as the size of the system and
the number of connections increase. In this scenario, a cut-
off constant (γ) based on operator knowledge is used to
determine the maximum distance that a bus must have to
belong to a given group. This can be seen in (1) for frequency
measurements:

fi(t)− fj(t) ≤ γ (1)

For a window of angle measurements or frequency sig-
nals, there are several ways to approach the assessment of
coherency. One can calculate the difference at every instant,
making the tuning of the cut-off constant much more sensible
to transitory periods and noise. Or a distance metric can be
also define as the best to represent the distance among two
signals over a window length, making the tuning of γ easier.
However, the determination of the window length becomes
crucial as the distance will also alter as the window expands
or contracts. For the determination of coherency over ring-
down disturbances, the incorrect choice of the window length
may impact the determination of coherent groups. Usually,
windows are determined considering the slowest known inter-
area mode of oscillation of the system, where the length of
the window is set to twice the period of that mode. However,
this means windows of at least 2.2 seconds, as the fastest
inter-area mode has a 1.1 second period, up to 10 seconds,
considering the slowest modes. This delay may be prohibitive
for applications that would require fast action, such as area
coordinated damping controls [12].

The distance d(i, j, t) between the frequency measurements
fi and fj can be measured in several ways, such as the
absolute distance, Euclidean distance, the Frechet distance, the
cosine dissimilarity, among many others and a combination
of more than one [5]. This is also a dependent choice on
the operator knowledge and can impact the clustering of
buses, specially regarding the sensitivity of the consequential

clustering method. It deals with with appropriate filtering of
signal to increase the signal-to-noise ratio (SNR) and the
proper adjustment of the size of the data set, that is, the
window length.

B. TDA

The TDA approach is a data-driven method derived from
empirical data analysis [13] that approximates the probability
mass function (PMF) of the data exclusively from the data
themselves and a distance metric in accordance with the type
of data measured, without any previous assumption of the
distribution type (e.g., Gaussian, Logistic, Weibull, etc), nor
number of modes, i.e., how many distribution means the data
possess. To approximate the PMF, some properties must be
calculated, but first a distance metric between the points must
be defined.

In [8], the TDA method is calculated for a fixed window
T of frequency measurements. Here, the recursive form will
be presented, where the following properties are calculated at
every new measurement K. As the interest is the coherency
between measured signals, in other words the distance between
signals, the Euclidean distance is used:

d(i, j, t) =
√

(fi(t)− fn)2 − (fj(t)− fn)2 (2)

where fi(t) and fj(t) are frequency measurements at the time
instant t, fn is the system nominal frequency, and d(i, j, t)
is the distance metric between frequencies at the same time
instant.

Next, three properties are calculated that lead to the value
of the typicality τ , which as it approximates the PMF. These
properties are: i) cumulative proximity; ii) eccentricity and
iii) density. These properties are important as they are used
for construction of the approximate PMF as equivalents to the
statistical moments and at the clustering stage of the method,
as the guarantee of the points, i.e. buses, belonging to a group
is given by the Chebyshev inequality, where the eccentricity
is used as a measure of anomaly within a group.

The first property, cumulative proximity q(bi), is given as
follows:

q(bi) =

N∑
j=1

d2(fi, fj) (3)

where N is the number of measuring points available. q(fi)
is a scalar that represents the total distance of a point within
a distribution based solely on the chosen metric or compound
of metrics and bi is a point in the data set, which can be for
example the norm of the frequency at bus i for a given window
of length T , or the vector of the norms of the distance between
fi to every other bus. However, q(bi can also be recursively
calculated at every instant K as:

qK(bi) = qK−1(bi) + d2(bi, bj) (4)

in which case we can consider bi solely as the measurement
of angle or frequency at bus i at instant K. For the Euclidean
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distance, [14] shows that the recursive proximity can be
calculated as:

qK(bi) = K(∥bi − µK∥2 +XK − ∥µK∥2) (5)

where µK and XK are the means of the set bK and bT bK ,
respectively, and both of them can be updated recursively as
follows:

µK =
K − 1

K
µK−1 +

1

K
b∀i,K (6)

Xk =
K − 1

K
XK−1 +

1

K
∥b∀i,K∥2 (7)

Once this property is calculated recursively, all following
properties can be updated at every new acquired measurement,
in contrast to [8], where the properties are calculated once
for the whole batch of measurements from the moment of
disturbance up to T = 10. This recursive approach will
become beneficial when we calculate the typicallity as K
increases and we observe its values reaching stability earlier
than T = 10.

The second property is the eccentricity, which is a mea-
surement of anomaly within the data set. Here, we show the
normalized form of the eccentricity, ϵ:

ϵK(bi) =
2qK(bi)

1
K

∑N
j=1 qK(bj)

(8)

For the case where the distance matrix is Euclidean, the
eccentricity can be calculated as:

ϵK(bi = 1 +
∥bi − µK∥2

σ2
K

(9)

where σK is the standard deviation, σK =
√
XK − µ2

K

The normalized eccentricity is a very important metric
because it indicates the points that are away from the peak
of the data distribution. Hence, it can be used to find the tails
of each mode in the distribution, or in our case, the buses that
are borderline part of a given coherent group. If we recall the
Chebyshev inequality for the Euclidean distance:

P (∥µK − bi∥2 > n2σ2
K) <

1

n2
(10)

where n is the number of times the standard deviation away
from the global mean is being analyzed for bi. Using the
standardized eccentricity, the Chebyshev inequality can be
reformulated of the form:

P (ϵK(bi) > n2 + 1) <
1

n2
(11)

With this expression, it can be said that, there is a smaller
than 1

9 probability of ϵk(bi ≥ 10, for n = 3, which is a widely
used condition for anomaly/tail detection. Furthermore, if the
data distribution is Gaussian (which is not imposed by the
TDA method), the probability of ϵk(bi ≥ 10, for n = 3 is
less than 0.3%. This property is crucial for the clustering of

buses without dependence on operator knowledge for setting
a cut-off constant γ.

Next, we introduce the third property, the data density DK ,
which is calculated as:

DK(bi) =
1

ϵK(bi)
(12)

Data density is the inverse of the eccentricity and data points
that are closer to the mean have higher density values. The
value of the data density evaluated at a particular data sample
indicates how strongly this particular data sample is influenced
by the other data samples in the data space due to their mutual
proximity and attraction. It is also inversely proportional to the
square distance between these two data samples.

The last calculated property is the typicality τ , given as:

τK(bi) =
DK(bi)∑N
j=1 DK(bj)

(13)

Analogously to the PMF, all points bi have τ(bi within
(0, 1], and the sum of all typicalities of the points of the
distribution is equal to 1. However, since PMF is imposed to
the data, it can have non-zero values for infeasible variable
values (e.g., negative frequency), because characteristics of
the variables are assumed prior to the data set. The points
with higher typicality are the ones closer to the peak of the
distribution, similar to PMFs like say, the tip of the bell curve
for Gaussian distribution.

Once the properties are calculated, the clustering of buses
is performed. With the recursive form of the TDA method, its
properties and the clustering is done at every new measure-
ment. The clustering process of the TDA method and more
details of the method can be seen in [8]. Next, the methodology
for calculating the window length is presented, using the TDA
method.

III. METHODOLOGY

The proposed methodology is presented in Fig. 1. It is
calculated for every new batch of PMU measurements received
until the point where the variance condition is attended. The
minimal data sample is 5 × N due to the filtering process,
where N is the number of PMUs available.

The first stage of the methodology is a pre-processing step to
increase the SNR. As frequency measurements of PMUs are
derived from voltage phasor angle measurements unrealistic
spikes due to non-electromechanical phenomena may appear
in both angle and frequency signals. To remove this effect,
the first filter applied to the signals is a moving median filter,
with a 5-sample window. Next, the DC offset is removed and
the resulting signal is detrended with the dynamics separation
algorithm [15].

The second step is the calculation of the distance, using (2)
to form a metric of the measurements distribution. With the
points and their distances, it is possible to the calculate
the TDA cumulative proximity (q(bi) (3)), normalized ec-
centricity (ϵK(bi) (8)), density (DK(bi) (12)) and typicality
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Fig. 1. Recursive TDA methodology

(τK(bi) (13)) properties. Starting at the second iteration of the
methodology, q(bi) and ϵK(bi) can be recursively calculated
using (5), (6), (7) and (9), respectively.

The third step is the clustering algorithm which uses the
Chebyshev algorithm as a cut-off proxy in substitution of
an user dependent constant. The clustering algorithm firstly
ranks the points’ typicalities by their Euclidean distances,
starting from the highest typicality value. This creates a global
distribution of typicalities based on their proximity and peaks
of typicality are formed, if the distribution is multi-modal,
indicating the existence of those modes. The peaks in the
typicalities distribution are addressed as seeds of clusters Cm.
Each cluster seed/peak receives its closest points by Euclidean
distance, where the mean and standard deviation of each
cluster Cm are computed. If a point is equally distant from
two clusters, the point is addressed to the most likely cluster
by the Chebyshev criterion, using the eccentricity of the point.
After all clusters are formed and their first statistical moments
are known, each Cm is compared via Chebyshev inequality for
a tail of 3σ with their mean values and the highest typicality of
each cluster. If their means are closer than 2σ, the cluster with
highest typicality agglutinates the other, repeating the process
until the number of cluster remains the same. More details
regarding this algorithm can be seen in [8].

At each iteration K, the variance of the typicalities vark is
also calculated as:

varK(Cm) =

∑M
i=1(τi − τ)2

M
(14)

where varK(Cm) is the variance of cluster Cm at the instant
K, M is the number of points in Cm and τ is the mean
of the typicalities at Cm. Finally, if varK(Cm), for every
cluster, remains unaltered, say λ = 0.5s, then the method
converged to the coherent groups/clusters, with a window of
length K. Otherwise, the method is repeated for the next batch
of samples at t = K + 1.

The proposed methodology generates a size controlled win-
dow iteration process, illustrated in Figure 2 for bus 9 from
Kundur 2-Area test system, where for new samples the method
in Figure 1 is repeated until the variance criteria is satisfied.

Next, we show the application of the proposed methodology
to the Kundur test system, and discuss the characteristics of
the work.

IV. RESULTS

The method is now applied to the 2-area Kundur system.
The parameters of the system are the same as in [16], shown

Fig. 2. Size controlled window

Fig. 3. KundurTestSystem

in Figure 3. This is a system with symmetrically well defined
groups, due to its topology, and with a boundary bus (bus 8)
that can be addressed to any group, depending on the tuning of
the chosen coherency detection method. The groups are shown
in Table I.

The simulations were performed using the ANATEM soft-
ware from CEPEL [17], and the recursive TDA method was
implemented with MATLAB R2018a, on an Intel Core i7-
8850U 2.00 GHz processor with 8 GB of memory. To examine
the proposed method, a 100 MW step is applied to bus 9 at 1
second which is the bus with highest load, in order to excite
the ocillatory modes to be captured. The frequency response
for all buses is presented in Fig. 4.

The methodology is applied to the frequency signals starting
with 5 cycles due to the move median filter. The first set of
calculated typicalities is shown in Fig. 5, where the blue group
is the group of generators 1 and 2, as reference. Note that the
initialization of the method and the lack of information as
electromechanical phenomena takes seconds to develop, the
groups are incoherent, according to the coherency concept and
the system topology.

However, as time evolves and new samples are provided,
the distribution of the data becomes more consistent with the
coherent groups of the system, as shown in Fig. 6. We can see

TABLE I
GROUPS IN THE 2-AREA KUNDUR SYSTEM.

Buses
Group 1 1,2,5,6,7,8
Group 2 3,4,9,10,11

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on April 07,2023 at 03:23:36 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Frequency response of the Kundur test system to 100 MW step at
bus 9.

Fig. 5. First set of typicalities.

that, even though the values of the typicalities oscillate, their
values remain close to each other after a few seconds.

Figure 6 also shows the highest values of typicality in
each group, namely buses 5 and 10. As the highest value
of typicality represents the point closest to the mean of the
distribution in such group, this bus can be interpreted as the
center of the coherent group, since the mean of the distribution
would represent the mean of the coherent response observed
in frequency signals of the group. It is also interesting to note
that the center buses of each group are not symmetrically
equivalent, as in Area 2 the center bus is closer to the point
of the fault.

Furthermore, Figure 6 reiterate the results corresponding
to slow coherency clustering algorithm in [18], where eigen-
vectors associated with the inter-area frequency modes are
computed and the mode shapes are used to form the slow
coherency groups of generator and buses. However, due to the

Fig. 6. Evolution of typicalities.

tail criterion of the TDA method, i.e. Chebyshev inequality,
bus 8 is addressed to Area 1, whereas in [18] the bus is left
outside any group. Note that, depending on the disturbance, the
areas using recursive TDA may change, as the window length,
contrary to slow coherency method, which considers the power
system linear model, hence the areas remain constant for the
same operating condition.

This behavior can be clearly seen in Fig. 7, where after
about 2.5 seconds, the variance of the groups remains stable.
Considering that the disturbance is applied at 1 second, the
resulting difference is of 1.5 seconds. This is in accordance
with the frequency of the inter-area mode of the system, which
is of 0.545 Hz, with a period of approximately 1.8 second.
This points to the fact that a window length of two times the
period of the the slowest known inter-area mode of the system,
as used in [2], [8] may be overzealous. For this methodology,
the window length necessary would be of 1.5 seconds, plus the
additional 0.5 seconds for assertion of the variance criterion,
that is, a window length of 2 seconds.

It is important to note that the size of the window length may
vary, according to the system or the system configuration itself.
For instance, a bigger system with more modes, or a system
with a slower mode may tend to have a different window
length to accommodate the minimal information necessary in
the signals.

V. CONCLUSION

This work has demonstrated that the recursive tipicality data
analysis can be successfully implemented by using an adaptive
window-size. Thus, the proposition of a recursive form of the
TDA coherency detection method does not depend on an initial
guess of the number of groups, its central points, neither an
arbitrary cut-off constant. This is thanks to the recursive form
removes the necessity of window length determination by the
user, through the analysis of the variance of the typicalities
within each group. The proposed method is applied to the
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Fig. 7. Variance of typicalities.

Kundur test system to confirm its effectiveness and perfor-
mance. Future works include the application of the method
to larger systems, real measurements and the implementation
in simulated lab systems for online application. Additionally,
the investigation of the Area center bus to represent the Area
response will be pursued.
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