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Abstract—Wind generation has gained widespread use as a re-
newable energy source. Most wind turbines and other renewables
connected to the grid through converters result in a reduction
in the natural inertial response to grid frequency changes. The
doubly-fed induction generator (DFIG) can be controlled to
compensate for this reduction and, in fact, provide faster response
than traditional synchronous machines. This paper proposes to
design observer based output feedback linear quadratic regulator
(LQR) and H∞ control laws to realize the inertia emulation
function and deliver fast frequency support. The aim is to track
the reference speed by a diesel synchronous generator (DSG) in
order to reach the desired inertia. The control signal is computed
based on a reduced order model using the balanced truncation
technique. A comparison with selective modal analysis (SMA)
and balanced truncation model reduction techniques is presented.
Comprehensive results show the effective emulation of synthetic
inertia by implementing the control laws on a nonlinear three-
phase diesel-wind system. The proposed technique is analyzed
for different short circuit ratio (SCR) scenarios.

Index Terms—Inertia emulation, diesel-wind system, output
feedback control, robust control, balanced truncation model
reduction.

NOMENCLATURE

Mathematical Symbols
∆ Deviation from operating point
s Laplace operator
A, B, E State, control input, disturbance input matrices
C, D, F Output, control feed-forward, disturbance feed-

forward matrices
Physical Variables
All variables are in per unit unless specified.
fb Speed base of diesel generator [Hz]
HD, Hw Diesel, wind turbine generator inertia constant [s]
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Hrf Reference model inertia constant [s]
idrref Reference instantaneous rotor current in d-axis
idr, iqr Instantaneous rotor current in d, q-axis
ids, iqs Instantaneous stator current in d, q-axis
iqrref Reference instantaneous rotor current in q-axis
KPτ , KIτ Proportional, integral gain of torque controller
KPC , KIC Proportional, integral gain of current controller
KPQ , KIQ Proportional, integral gain of reactive power con-

troller
λdr,λqr Rotor flux linkage in d, q-axis
λds,λqs Stator flux linkage in d, q-axis
Lm Mutual inductance
ωc Cut-off frequency of low-pass filter [Hz]
ωd, ωr Diesel, wind turbine angular speed
ωb Speed base of wind turbine generator [rad/s]
ωfref Filtered reference speed for wind turbine generator
ωs Synchronous angular speed
Pg , Qg Active, reactive power of wind turbine generators
Pm Mechanical power of diesel generators
Pv Valve position of diesel generators
Qgref Reference reactive power of wind turbine genera-

tors
RD Governor droop setting of diesel generators
Rrf , Drf Governor droop, load-damping coefficient of ref-

erence model
Rs, Ls Stator resistance, leakage inductance
Rr, Lr Rotor resistance, leakage inductance
Ψs Space vector of stator flux magnitude
σ Leakage coefficient of induction machines
τm, τe Mechanical, electric torque of wind turbine gen-

erators
τd, τsm Diesel engine, governor time constant [s]
τdrf ,τsmrf Reference model time constants [s]
uc Supplementary input for model reference control
Vds, Vqs Instantaneous stator voltage in d, q-axis
Vdr, Vqr Instantaneous rotor voltage in d, q-axis

I. INTRODUCTION

Diesel synchronous generators (DSGs) are a common
choice for powering microgrids in remote locations. A renew-
able source can reduce the operating cost by partially replacing
the usage rate of more expensive diesel generators [1]. Differ-
ent types of renewable energy sources such as wind and solar
are connected to the grid using power electronic interfaces
that can ensure power injection at the rated grid frequency [2].
The variable nature of renewable power poses challenges for
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frequency control in mixed diesel-renewable microgrids [3].
This variability can result in large frequency fluctuations with-
out proper controls [4]. Furthermore, unacceptable frequency
excursions caused by deterioration of inertial response in the
presence of large disturbances can adversely impact system
reliability [5]. To address the frequency stability challenges,
renewable energy sources need to be equipped with innovative
frequency control approaches that contribute to frequency reg-
ulation operations [6], [7]. Utilizing stored energy as synthetic
inertial response, commonly referred to as inertia emulation,
is one of the widely used approaches [8]. These controls can
be employed either in grid connected mode or in island mode
[9].

Although inertia emulation can be equipped for most
converter-interfaced distributed energy resources (DERs),
wind turbine generators (WTGs) are the most suitable can-
didate since the stored kinetic energy in the rotating mass can
be readily utilized without additional storage. Existing inertia
emulation methods generally couple the stored kinetic energy
of WTGs to the rate of change of frequency (ROCOF) [10],
[11]. The effective inertial response using such methods can
be difficult to quantify as the emulated inertia constant is time
varying [12], [13]. Therefore, the system performance cannot
be guaranteed. The approach in [14] provides droop control for
virtual synchronous generators as a specific control structure
to estimate and control inertia. However, this approach needs
to use the WTG as a voltage source and at the cost of
a de-loaded operation. Besides, adequate frequency stability
becomes critical with increasing renewable penetration. The
main challenge from the control viewpoint is to keep the
system frequency within specified bounds in the presence of
disturbances.

In [1] and [15], the authors propose a novel inertia emulation
controller for current-mode WTGs. The proposed controller
employs the model reference control (MRC) paradigm to
precisely emulate programmable inertia constant which guar-
antees performance on the frequency response. As we know,
the MRC is more of a control task than a design method.
The H∞-based state feedback control is employed in [1] and
[15] to realize the MRC-based inertia emulation. In order
to preserve the original states in the model reduction, the
SMA-based model reduction method is used. State feedback
control is not very practical since state measurements are not
always available. The H∞ control usually leads to larger gains.
Although a technical method is proposed in [1] and [15] to
limit the size of the gains, the control signal still has a high
peak, and the kinetic energy of WTGs is not optimally utilized.

To resolve the aforementioned issues, an output feedback
LQR design is proposed in this paper for MRC realization.
In this effort, a Luenberger observer is used to design dy-
namic output feedback LQR control laws. To simplify the
control design, the balanced model reduction technique is
used and compared with the SMA technique in capturing
system characteristics. We verify the proposed method on a
modified 33-node microgrid using a detailed full-order three-
phase simulation model in Simulink. The proposed technique
is analyzed for different SCR scenarios.

The significance of the proposed method in comparison

to the other methods is two-fold. First, compared with the
common inertia emulation methods for current-mode DERs
that lead to time-varying synthetic inertia responses, we pro-
pose the MRC framework, which allows us to emulate the
inertia precisely and provide guaranteed performance for the
frequency response. We verify the proposed method on the
modified 33-node microgrid using a detailed full-order three-
phase simulation model in Simulink.

Second, since MRC is more of a control task than a
design method, we propose the output feedback LQR and H∞
controls with the Luenberg observer to realize the MRC-based
inertia emulation (IE). Compared with [1] and [15] which use
state-feedback control design, the technical benefits are:

1) The output feedback design frees us from the SMA-
based model reduction, which is necessary for state
feedback control design since it keeps the original state
information in the reduced-order model, and allows us
to use a variety of model reduction techniques.

2) We employ balanced truncation model reduction and
show that it provides higher accuracy compared to the
SMA-based approach.

3) We employ both LQR and H∞ methods to design the
output feedback control, and perform a thorough com-
parative study over these two methods as well as to the
proportional-integrator based output feedback control.

4) Since state measurements are not available all the time,
the output feedback control is more practical and can be
readily applied in a practical implementation.

This paper is organized as follows. Section II briefly intro-
duces the primary objective for inertial response. Section III
presents the balanced truncation model reduction technique
used for the diesel-wind system and a comparison with the
SMA model reduction technique. Section IV describes the
proposed observer-based LQR and H∞ controllers based on
inertia emulation strategy. Simulation results are presented in
section V, followed by the conclusion in section VI.

II. OBJECTIVE FOR INERTIAL RESPONSE

After a power disturbance, online synchronous generators
will first limit the ROCOF by converting rotating kinetic
energy into electric power, which is known as the inertial
response. Then, as the rotor speed slows down the turbine-
governor system senses speed deviations and acts to adjust
the output of the prime movers to stabilize the rotor speed.
The governor response is referred to as the primary frequency
control [16]. The time scale of both responses are in terms of
seconds. Due to the deadband and response time of the turbine-
governor, the inertial response is dominant in the beginning
period of frequency decline as shown in Fig. 1. The primary
frequency response will then increase to regain power balance
and stop the frequency decline. This process is governed by
the swing equation:

2Hs∆ω = ∆Pm −∆Pd (1)

where s is the Laplace operator, 2Hs∆ω denotes the inertial
response, ∆ω denotes the primary frequency response and
∆Pd denotes the disturbance. With more renewable energy
penetration, fewer synchronous generators will be committed
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leading to smaller inertia H in the system, and potentially
inadequate inertial response. Wind turbines, for example,
are effectively decoupled from grid frequency and will not
naturally respond to frequency changes. Thus, controls must
be designed to limit the ROCOF if grid support is needed.
Controlling the power output proportional and opposing the
ROCOF is known as inertia emulation. The traditional ap-
proach of an inertia emulation strategy for a WTG is illustrated
in Fig. 2. In a such strategy, the stored kinetic energy in a
WTG will be released in proportion to ROCOF. The speed of
the induction motion will decline due to the energy conversion
[12]. Considering the conceptual representation of the inertia
emulation in Fig. 2 (b), the swing equation is compensated by
the power from the WTG:

2Hs∆ω = ∆Pm −∆Pd +Gw(s)Kies∆ω︸ ︷︷ ︸
∆Pg

(2)

where Gw(s) represents the dynamic response of WTG to
generate the inertia emulation power ∆Pg according to the
ROCOF Kies∆ω. As described in [1] and [10], the configu-
ration in Fig. 2 can only produce synthetic inertial response
where the equivalent parameters are time varying and may be
difficult to tune. This is easy to see if we rearrange (2) as
follows:

(2H −Gw(s)Kie)s∆ω = ∆Pm −∆Pd (3)

This poses challenges for dynamic security assessment, stabil-
ity analysis and system performance guarantees. See [1] and
[12] for details on the derivation of equivalent parameters of
frequency response model under emulated inertia.

Fig. 1. Typical frequency response after a generator trip.

To overcome the aforementioned difficulties, the objective
of our proposed controller is to provide a specific amount of
inertia emulation to achieve near-ideal response in the time
scale of inertial response in the sense that the equivalent
parameters are nearly constant. In other words, we need to
compensate the negative effect induced by Gw(s) in (3),
which mainly includes the primary mover dynamics and the
internal controller response time which is inherent and cannot
be compensated by external controllers. So the synthetic
inertial response can only be ”near-ideal” compared with the
conventional inertial response. Fortunately, inner control loops
of the converter are too fast (in the time scale of milliseconds)
to have sizable impacts on the frequency control [17]. On the
other hand, the negative impact induced by the primary mover
dynamics, that is, the motion dynamics of the WTG, can be
compensated.
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Fig. 2. Traditional inertia emulation function within a wind turbine. (a)
Detailed view. (b) Conceptual view.
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Fig. 3. Model reference control-based inertial emulation control diagram.

The idea to achieve near-ideal synthetic inertial response of
WTG can be recast as a tracking problem with respect to a
dynamic reference model, known as the MRC. In the MRC,
we define a frequency response model with desired parameters
as the reference. The objective is to make the DSG speed pre-
cisely track the reference frequency using the support from the
WTG as shown in Fig. 3. Intuitively, the frequency response of
the augmented physical plant consisting of the diesel generator
and the WTG will be the same as the response of the reference
model. Therefore, the emulated inertia constant is close to the
one of the reference model. To see this, let 2Hrfs∆ωrf and
2HDs∆ωd be the inertial response of the reference model
and DSG in Fig. 3, respectively, where Hrf is the desired
inertia constant and Hrf−HD = Hie > 0. The power balance
condition holds as:

∆Pd = 2Hrfs∆ωrf = 2HDs∆ωd + ∆Pg (4)

If the speed of DSG can track the speed of the reference model
with the support of WTG, that is, ∆ωrf ≈ ∆ωd, then the
following relation holds:

∆Pg ≈ 2Hrfs∆ωd − 2HDs∆ωd = 2Hies∆ω (5)

Therefore, the synthetic inertial response 2Hies∆ωd is em-
ulated by the WTG. Traditional strategy in Fig. 2 can be
considered as an open-loop control with respect to the WTG
since no status information of the WTG is fed back to the
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inertia emulation module. Since the MRC-based inertia emula-
tion generates the control signal using both grid frequency and
WTG states as shown in Fig. 3, it can compensate the negative
effect induced by the motion dynamics of WTG. Nevertheless,
the MRC is more of a control task than a design methodology.
In the following, a mathematical model incorporating both the
diesel and WTG will be derived, where an output feedback
LQR and H∞ controllers will be designed to realize the MRC-
based inertia emulation.

III. DIESEL-WIND SYSTEM MODELING

In this section, the dynamic model of the WTG is presented.
The wind turbine model is assumed to be a type-3 WTG,
which is one of the most common wind turbines used in
practice. Type-3 wind turbines are also called DFIG-based
wind turbines. Note that the proposed paradigm can be applied
to any type of converter-interfaced DERs. But WTGs are more
readily suitable due to their inherit kinetic energy.

A. Doubly-Fed Induction Generator and Converter Model

The converter of the wind turbine generator includes the
rotor-side and grid-side converters, which control the speed of
the generator and inject power into the grid, respectively [18].
Since, the rotor-side converter controls the generator speed by
regulating the electromagnetic torque, the frequency support
function should be included within this subsystem. The grid-
side converter has less impact on the frequency support since
the time scale of the DC regulation is much faster than the
rotor-side control current loop for stability reasons [1].

The differential equations of the fluxes in the dq axes and
algebraic equations of the DFIG are given by:

dλqs
dt

= ωb[Vqs −Rsiqs − ωsλds] (6)

dλds
dt

= ωb[Vds −Rsids + ωsλqs] (7)

dλqr
dt

= ωb[Vqr −Rriqr − (ωs − ωr)λdr] (8)

dλdr
dt

= ωb[Vdr −Rridr + (ωs − ωr)λqr] (9)

λqs = Lsiqs + Lmiqr (10)
λds = Lsids + Lmidr (11)
λqr = Lriqr + Lmiqs (12)
λdr = Lridr + Lmids (13)

The dynamics of the induction machine are presented in
(14)-(19), where, τm and τe are the mechanical and electro-
magnetic torques (τe = (Lm/Ls)(λqsidr − λdsiqr)). ωfref is
the filtered reference speed for the wind turbine generator and
ωrref is the reference rotor speed which is computed as an
optimal speed based on the maximum power point tracking
(MPPT) curve in a relation with the measured electric power
as shown in Fig. 4 (Eq. (20)) [19]. The state variables related
to the speed controller of the WTG are represented as x1 and
x2. Also, x3 and x4 are defined as state variables related to
the reactive power controller. Qg and Pg are the reactive and
active power of the wind turbine generator [20].
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Fig. 4. Mechanical power extracted from wind turbine based on rotor speed.

dωr
dt

=
(τm − τe)

2Hw
(14)

dωfref
dt

= ωc(ωrref − ωfref ) (15)

dx1

dt
= KIτ (ωfref − ωr + uc) (16)

dx2

dt
= KIQ(Qref −Qg) (17)

dx3

dt
= KIc(iqrref − iqr) (18)

dx4

dt
= KIc(idrref − idr) (19)

ωrref = −0.67(Pg)
2 + 1.42(Pg) + 0.51 (20)

The algebraic relations of the electric power are expressed
in (21) and (22). The loop of algebraic equations is closed
by the algebraic relations in (23) and (24) [1], where σ =
(LrLs −L2

m)/(LrLs) is the leakage coefficient of the induc-
tion machine.

Pg = Vqsiqs + Vdsids + Vqriqr + Vdridr (21)
Qg = Vqsids − Vdsiqs + Vqridr − Vdriqr (22)
Vqr = x3 +KPc(iqrref − iqr)

+ (ωs − ωr)(σLridr + (
ΨsLm
Ls

)) (23)

Vdr = x4 +KPc(idrref − idr)− (ωs − ωr)(σLriqr) (24)

where iqrref and idrref are expressed by (25) and (26).

iqrref =
−Lsτeref
LmΨs

(25)

idrref = x2 +KPQ(Qgref −Qg) (26)

The model used for the DSG is the complete model as
described in (27)-(29). This model shows speed changes of
the diesel generator based on power, mechanical power and
valve position variations [13], [16].

d∆ωd
dt

=
fb

2HD
(∆Pm − (∆Pd −∆Pg)) (27)

d∆Pm
dt

=
1

τd
(−∆Pm + ∆Pv) (28)

d∆Pv
dt

=
1

τsm
(−∆Pv − (

∆ωd
fbaseRD

)) (29)

Here, ∆Pd is the disturbance which is the measured power
flow variation at a specified location [1] as shown in Fig. 3.
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B. Model Reduction Technique

Model reduction is critical for control design of large-scale
systems, such as the power grid, as they are governed by differ-
ential equations where the number of states can be extremely
large [21]. The goal is to provide a low-dimensional model that
has a similar response characteristics as the original system
and allows a level of storage and computational requirements
manageable for practical design and implementation [22].

The model reduction is also beneficial for implementation
and deployment of dynamic feedback controllers which are
dynamic systems and have the same order as the plant. The
full-order plant contains faster electromagnetic dynamics and
slower electromechanical dynamics. The former is less rele-
vant to the frequency response, while the latter dominates the
frequency behavior. Without model reduction, the controller
dynamics will also contain the fast electromagnetic modes that
are less relevant to the frequency response but require small
steps to simulate, and consume considerable computation
resources of the embedded system once deployed.

One popular model reduction technique is the balanced
truncation, which is a simple efficient model reduction tech-
nique broadly used in reducing model orders of high order
linear systems [23]. Balanced reduction was first introduced
by Moore [23]. It has been shown to provide accurate reduced
order model representations of state-space systems. Since the
reduction procedure is based only on system inputs and out-
puts, model reduction may be heavily dependent on the scaling
of the states. However, balanced truncation is independent of
the particular system scaling since it uses balanced state space
realizations [24].

This paper proposes the balanced reduction method for
large scale power systems instead of the traditional reduction
method defined as SMA [1]. Although the SMA method has
a nice physical interpretation in many cases, it is not the ideal
method from a control point of view, since it only relies on
certain modes to reduce the order of a large model. We are
suggesting a more accurate method that can maintain the main
dynamical features of the whole system in the reduced model.
The characteristic of this method can help us provide a reliable
reduced order model and design a proper, optimized and robust
controller to guarantee desired performance.

Assume a stable linear time-invariant system as illustrated
by the n dimensional state-space model in (30).

ẋ(t) = Ax(t) +Bu(t); y(t) = Cx(t) (30)

In balanced truncation, a balanced realization is first obtained
to make the controllability and observability Gramians Qc and
Qo equal to the diagonal matrix of the Hankel singular values,
i.e., Σ = diag(σ1, . . . , σN ) . These two Gramians should
satisfy the Lyapunov equations:

AQc +QcA
T +BBT = 0

ATQo +QoA+ CTC = 0 (31)

In addition, Qc and Qo form the bases for the controllable
and observable subspaces [25]. Hence, the system is balanced
when the controllability and observability Gramians are equal
[26].

The controllability and observability Gramians are described
as follows [26]:

Qo =

∫ ∞
0

eA
T tCTCeAtdt; Qc =

∫ ∞
0

eAtBBT eA
T tdt

(32)

In order to transform a realization into a balanced form, a
coordinate transformation matrix T is needed to transform
the balanced state vector xb to the original state vector x,
where, x = Txb, such that the transformed observability
and controllability Gramians are diagonal and equal [24] as
computed by the following equations:

Q̃o = T−TQoT
−1; Q̃c = TQcT

T (33)

The transformation T can be computed by first calculating
the matrix Qco = QcQo [25] and determining its eigenmodes
Qco = TΣ2T−1 . Note that the transformation T is chosen
such that the following identities are satisfied [26]:

Q̃c = Q̃o = T−1QcT
−T = TTQoT := Σ (34)

So, the balanced state-space model (30) is obtained by taking
TAbT

−1 = A, CbT−1 = C and TBb = B [26]:

ẋb(t) = Abxb(t) +Bbu(t); yb(t) = Cbxb(t) (35)

The balanced realization gives us the new order of states
based on observability and controllability, where the first states
are the most controllable and observable states [25]. Hence,
(36) expresses the reduced order model by keeping nr states
(x1, . . . , xnr ) that are the most controllable and observable
states and most relevant from the control viewpoint [24].

ẋr(t) = Arxr(t) +Bru(t)

yr(t) = Crxr(t) (36)

Therefore, we can compute the reduced state space matrices
using Tr =

[
Ir 0

]
T as:

Ar :=
[
Ir 0

]
T−1AT

[
Ir
0

]
;Br :=

[
Ir 0

]
T−1B

Cr := CT

[
Ir
0

]
(37)

The error bound of balanced truncation is given by [26]:∥∥y(t)− yr(t)
∥∥

2
≤ 2

n∑
nr+1

σi
∥∥u(t)

∥∥
2

; ∀u ∈ L2 (38)

where L2 denotes the space of finite energy signals (i.e., the
measurable square integrable functions). In order to make the
controller design procedure simple, a reduced linearized model
about the equilibrium point for the type-3 WTG based on
balanced reduction technique is used. A comparison with the
SMA technique proposed in [1] is presented. It provides us
with a benchmark on how close the reduced model is to the full
order linearized model and its performance for all frequency
ranges. The linearized full order model of the WTG around
the equilibrium point is given as:

∆ẋf = Af∆xf +Bfuc; ∆yf = Cf∆xf +Dfuc (39)
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where

xf =
[
λqs, λds, λqr, λdr, ωr, ωfref , x1, x2, x3, x4

]T
(40)

The full order model is a 10th order model and ∆ gives
the variation of each variable around the equilibrium. ∆yf is
considered as the WTG power output variation, (Pg), due to
the inertia emulation input. Then, the reduced order model of
the WTG is expressed in (41), where we keep only the most
controllable and observable states with the highest Hankel
singular value magnitudes and truncate the rest of the state
variables from the reduced realization. In other words, we are
eliminating the states that are at the same time difficult to
control and difficult to observe [22].

∆ẋred(t) = Ared∆xred +Breduc

∆yred = Cred∆xred +Dreduc (41)

where, Ared, Bred, Cred and Dred are the state, control input,
output and control feed-forward matrices of the reduced order
model, respectively.

IV. CONTROL DESIGN

In this section, two different control methods, a LQR and
a static state feedback H∞ control for reference tracking are
proposed. Since not all the state variables are available for
measurements and only the reduced model is used in the
control design stage, a Luenberger observer to estimate the
state variables based on the measurements is employed. This
results in dynamic output feedback LQR and H∞ controllers.

A. Linear Quadratic Regulator

A tracking problem is considered for a defined physical
plant as an aggregated model of the DSG and WTG. This
physical plant is the combination of (27)-(29) and (41) which
is given by:

ẋp = Apxp +Bpuc + Epud; yp = Cpxp (42)

where, xp =
[
∆ωd,∆Pm,∆Pv,∆xr1,∆xr2,∆xr3,∆xr4

]T
,

yp = ∆ωd and ud is the disturbance that is considered as the
measured power flow variation [1] shown in Fig. 3 and the
state-space model is

Ap =



0 fb
2HD

0 fb[Cred]
2HD

0 −1
τd

1
τd

01×4

−1
fbτsmRD

0 −1
τsm

01×4

04×1 04×1 04×1 [Ared]


;Bp =


fb[Dred]

2HD
0
0

[Bred]



Ep =


−fb
2HD

0
0

04×1

 ; Cp =
[
1 0 0 0 0 0 0

]
The reference signal (∆ωdrf ) for tracking is specified from

the reference model similar to the DSG model as:

ẋrf = Arfxrf + Erfudrf ; yrf = Crfxrf (43)

where xrf =
[
∆ωdrf ,∆Pmrf ,∆Pvrf

]T
, yrf = ∆ωdrf and

Arf =


−fbDrf

2Hrf

fb
2Hrf

0

0 −1
τdrf

1
τdrf

−1
fbτsmrfRrf

0 −1
τsmrf

 ;Erf =

 −fb2Hrf

0
0


Crf =

[
1 0 0

]
To formulate the control problem, we consider the LQR cost

function:

J =

∫ ∞
0

[xTQx+ uTRu]dt (44)

where Q = CTQ
′
C is a diagonal, symmetric, positive semi-

definite matrix of ∆ωd−∆ωdrf weights and R is a diagonal,
symmetric, positive definite matrix of control weights. The
optimal control problem minimizes (44) over all controls u ∈
L2(0,∞) with the tracking constraint. The LQR problem has
a unique solution for a controllable system and the optimal
input u∗ is given by [26]:

u∗ = −Kx = −
[
Kp,Krf

]
x (45)

Finally, the augmented closed loop system
xaug =

[
xp, xrf

]T
is defined below:

ẋaug(t) = Âxaug(t) + B̂xaug(t) + Êd(t)

y(t) = yp − yrf = Ĉxaug(t) + D̂xaug(t) (46)

where, d =
[
ud, udrf

]
, Ĉ =

[
Cp,−Crf

]
, D̂ =[

DpKp, DpKrf

]
, Â =

[
Ap 0
0 Arf

]
, B̂ =

[
BpKp BpKrf

0 0

]
and Ê =

[
Ep 0
0 Erf

]
.

To compute the feedback law, the observer in (47) is
used to estimate the states and we use the physical plant
output measurements to get an output feedback controller as
an inertia emulation controller. Therefore, the LQR based-
observer controller is expressed as follows:

˙̂x(t) = Âx̂(t) + B̂u∗ + L(y(t)− ŷ(t)) + Êd(t)

ŷ(t) = Ĉx̂(t) (47)

which can be written as:

˙̂x(t) = (Â+ B̂K − LĈ)x̂(t) + Ly(t) + Êd(t)

uie = Kx̂(t) (48)

where L is any matrix such that Â− LĈ is stable [26].
The LQR feedback law is applied to the nonlinear system

and compared to the H∞ controller in Section V.

B. H∞ Control

The theoretical formulation of the H∞ control problem
has been addressed in many books and papers, see [26] for
example. In this section, we use a static state feedback control
for reference tracking based on the H∞ control structure fully
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described in [1]. In this case, the objective is the sub-optimal
problem:

min
∥∥Gy/d∥∥∞ < γ ; γ > 0 (49)

where Gy/d is the transfer function from the distur-
bance to the tracking error where

∥∥Gy/d∥∥∞ is defined as
supess σ̄(Gy/d(jω)) [26]. σ̄(.) is the largest singular value
of Gy/d(jω). Equivalently, we can solve the multi-objective
optimization problem defined in (50). Necessary and sufficient
conditions for solving this problem are presented in [1]:

min γ + α+ β[
−αI K̄
K̄ −I

]
< 0 ,

[
βI I
I −P̄

]
> 0 , F̄ < 0 (50)

where there exists scalar variables γ, α, β > 0 and matrix
variables P̄ , Q̄, L̄i > 0 , M̄i, V̄i for i = 1, 2 and K̄. F̄ is
a symmetric linear matrix inequality (LMI), which can be
computed based on [1]. Therefore, the controller given in (45)
can guarantee the system performance, where the static gain
K = K̄P̄−1. Hence, similar to the LQR case, the use of the
Luenberger observer gives a dynamic controller based on the
computed static H∞ control, and results in a dynamic output
feedback controller.

The control structure for the LQR and H∞ as output feed-
back control for reference tracking based on inertia emulation
control is illustrated in Fig. 5. The controller K̂ is a dynamic
output feedback controller based on the observer expressed
in (48). The signal d represents disturbances and Z represents
measurements while y denotes the observed outputs (∆ωd and
∆ωdrf ) from the physical plant. The dynamic of the controller
K̂ can be represented by

ˆ̇x(t) = (Â+ B̂K − LĈ)x̂(t) + Ly(t)

uie(t) = Kx̂(t) (51)

where the controller K is designed based on the LQR or H∞
control techniques.

Fig. 5. Output feedback observer-based control.

V. NUMERICAL RESULTS

The proposed controllers are applied to a modified 33-bus
microgrid simulated using MATLAB Simulink platform [27],
[28]. The closed-loop system performance is tested using the
single diesel-wind system described in [1]. The WTG model is
modified based on the DFIG in the Simulink demo library by
changing the aerodynamic model to the one detailed in [20],
where a two-mass model is reduced to the swing equations
with combined inertia of the turbine and generator [1].

For simulation purposes, time constants of turbine-governor
system in the reference model are considered equal to that in
the diesel synchronous generator. Moreover, we only consider

tuning the inertia constants of the reference model and do not
emulate load damping effects [29]. The system parameters are
given in Appendix A.

A. Model Reduction Results

The reduced 4th order model of the WTG is expressed in
(53). Since there are only 4 states with the highest Hankel
singular value magnitudes, we keep only the 4 most control-
lable and observable states and truncate the rest of the state
variables from the reduced realization. In other words, we
are eliminating the states that are at the same time difficult
to control and difficult to observe [22]. The Hankel singular
values are:

Hs = [1.6 1.2 1.1 1.1 0.02 0.01 0.003

0.0005 0 0]T (52)

Observe the sharp decrease in the magnitudes of the singular
values after the 4th one justifying keeping only 4 state
variables and eliminating the rest in the following reduced
model:

∆ẋred(t) = Ared∆xred +Breduc

∆yred = Cred∆xred +Dreduc (53)

where,

Ared =


−638.5 −35.1 72.05 −288.3

35.1 −0.06 0.13 −101.1
−72.05 0.13 −0.28 353.7
−288.3 101.1 −353.7 −135.6

 ;

Bred =


−45.87

0.37
−0.8
−17.25


Cred =

[
45.87 0.37 −0.8 17.25

]
; Dred = 0.94

A comparison of the accuracy using balanced truncation
and SMA methods are presented in Fig. 6. As shown, we can
capture the full order model precisely. In addition, H∞ norms
for the difference between the reduced model transfer function
and the full order transfer function (

∥∥Gfull −Gred∥∥∞), where∥∥.∥∥∞ is the H∞-norm, are given in Table I. Balanced trun-
cation can reduce the order of the model with a much lower
H∞ norm, validating the accuracy.

Fig. 6. Singular values of full order model and reduced models.
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TABLE I
H∞ NORMS COMPARISON OF REDUCED ORDERED MODELS

Reduction Method H∞ Norm

Balanced Truncation 0.065
SMA 3.707

The responses of the nonlinear system and the reduced
order linear model are compared in Fig. 7 in order to validate
the latter under a step signal input. As shown in Fig. 7, the
modeling error using the balanced truncation is not significant.
The mean squared error between the reduced order model
and nonlinear model for the speed of the DSG (ωd), WTG
active power variation (Pg) and mechanical power variation of
diesel generator (Pm), captured as 0.034Hz, 1.4×10−6W and
0.0013MW, respectively. The closed-loop system performance
subject to a step load change at bus 18 as a disturbance is
considered for two different cases.
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Fig. 7. Response comparison of nonlinear and reduced order model physical
plant. (a) Step input. (b) WTG active power variation. (c) Speed of DSG. (d)
Mechanical power variation of diesel generator.

B. Case I

For the first case, the desired inertia in the reference model
is two seconds, that is, Hrf = 2, and the inertia constant
of the DSG is set to one second, that is, HD = 1. In
other words, we will emulate one second inertia constant
from the WTG, that is, Hie = 1. Under the MRC paradigm,
we compare three design approaches, that is, LQR, H∞,
and a simple proportional–integral (PI) controller. We also
compare the MRC paradigm with the conventional inertia
emulation method. The ROCOF is obtained by a washout filter
kis/1 + 0.01s. We index the aforementioned controllers as
follows:
• Controller 1: MRC-based IE with LRQ realization
• Controller 2: MRC-based IE with H∞ realization
• Controller 3: MRC-based IE with PI realization
• Controller 4: Conventional IE using a washout filter

The feedback gains obtained for Controllers 1 and 2 are given
in (54) and (55):

Klqr = [− 9.98 − 2.27 0.01 − 4.25 0.04 − 0.41

− 0.47 9.94 1.06 − 0.04] (54)

KH∞ = [83.01 2.98 0.17 18.74 0.42 2.33 2.24

− 83.38 − 2.39 0.12] (55)

The PI gain for Controller 3 is obtained via the pidtune
function in Matlab and given as Kp = 0.0113, KI = 0.6471.
The IE gain for Controller 4 can be determined based on Eq.
(3), that is, ki = −Hie/(2fb). To emulate one second inertia
constant, we set ki = −0.03. The closed-loop performance is
illustrated in Fig. 8. As shown, the synthetic inertia constant is
accurately emulated using Controllers 1 and 2. However, both
Controllers 3 and 4 have tracking errors. Fig. 8 (a) and (b)
present the control inputs and the power outputs of the WTG,
respectively. Note that there exists a weak inertial response for
the field-oriented controlled DFIG-based WTG even without a
supportive controller, and this response is sensitive to the rotor
current-controller bandwidth and cannot provide the exact
synthetic inertia. To have a precise comparison, the tracking
error for each realization is shown in Fig. 8 (d). It can be
readily observed that Controller 2 outperforms all controllers
followed by Controller 1 with the objective to remove tracking
error to get precise emulated inertia.

C. Case II

In the second case, setting the desired inertia to five seconds
(Hrf = 5), the closed-loop performance using MRC based
IE with different realizations is illustrated in Fig. 9. We use
the same indices as in the previous subsection to denote the
controllers. In this case the computed feedback laws (56) and
(57) for Controller 1 and 2 are

Klqr = [− 9.98 − 2.27 0.01 − 4.25 0.04 − 0.41

− 0.47 9.87 0.33 − 0.05] (56)

KH∞ = [288.9 5.86 0.20 44.43 1.35 − 3.51 13.30

− 289.16 − 1.21 0.019] (57)

The re-tuned PI gains for Controller 3 are Kp = 1.29
KI = 4.56. For conventional IE (Controller 4), based on
ki = −Hie/(2fb), to emulate four seconds inertia constant,
we set ki = −0.12. The performance of all controllers is
shown in Fig. 9. As seen in the figure, small tracking errors
are obtained by Controllers 1 and 2, that is, the closed-loop
system can emulate the desired inertia under the presence of
disturbance. It is clear that if the desired inertia defined by the
reference model increases, Controllers 3 and 4 are unable to
track the reference frequency well and their tracking errors are
higher relative to the LQR and H∞ controllers. It can also be
observed that Controller 2 outperforms all controllers followed
by Controller 1. For Cases I and II, the H∞ controller performs
better than the LQR and PI controllers since it has improved
robustness properties in the presence of plant uncertainties,
that is the discrepancy between the reduced order linear model
and the full order nonlinear model.

D. Control Performance for Different Short Circuit Ratios

As known, the SCR is often used as an index for the
connection strength. The SCR of a strong grid is discussed in
[30], [31], [32]. The SCR is defined as the ratio between short
circuit apparent power from a 3-line to ground fault at a given
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Fig. 8. Closed-loop performance under MRC based IE with LQR, H∞,
PI controllers realization and conventional IE with desired inertia set to two
second. (a) Control input. (b) Active power variation of WTG. (c) Speed of
DSG. (d) Tracking error.

Fig. 9. Closed-loop performance under MRC based IE with LQR, H∞,
PI controllers realization and conventional IE with desired inertia set to five
second. (a) Control input. (b) Active power variation of WTG. (c) Speed of
DSG. (d) Tracking error.

location in the power system to the rating of the inverter-based
resource connected to that location [33]. As the numerator of
SCR relies on the specific measurement location, this location
is usually stated along with the SCR number that is defined
as:

SCR =
MVASC

MWn
(58)

where MVASC is the short circuit MVA level at the point of
interconnection (POI) without the current contribution of the
WTG, and MWn is the nominal power rating of the WTG
being connected at the POI. Here to analyze the sensitivity of
the proposed technique, the closed-loop system performance
for different SCR values is provided by implementing the
MRC based inertia emulation with LQR and H∞ controllers.
The SCR values for three different scenarios in a range of
(1.95,5) are provided in Table II where the MWn = 1.1MVA.

TABLE II
SCR VALUE FOR DIFFERENT SCENARIOS

MVASC SCR

2.1 1.95
3.4 3.1
5.6 5.1

The performance for the MRC based inertia emulation
with LQR and H∞ controllers, by setting all parameters and
controllers similar to Case II, are provided in Fig. 10 and Fig.
11, respectively. As it is clear, both proposed controllers can
emulate the desired inertia with a small tracking error. The
tracking error varies in a negligible range for all scenarios.
The captured SCR lower bound by simulations is 0.26, that
is the system performance with the proposed techniques is
guaranteed for SCR ≥ 0.26.

Fig. 10. Closed-loop performance under MRC based IE with LQR realization
for different SCRs. (a) Control input. (b) Active power variation of WTG. (c)
Speed of DSG. (d) Tracking error.

Fig. 11. Closed-loop performance under MRC based IE with H∞ realization
for different SCRs. (a) Control input. (b) Active power variation of WTG. (c)
Speed of DSG. (d) Tracking error.
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VI. CONCLUSIONS

In this paper, new output feedback LQR and H∞ control
laws for inertia emulation using balanced truncation and the
Luenberger observer are proposed. The controllers are applied
to the full order nonlinear model and compared favorably to
a PI controller and a conventional inertia emulation using a
washout filter. The diesel generator speed follows the reference
model in the time scale of inertial response, and accurate
emulated inertia is guaranteed by generating additional active
power from the WTG. The performance of the closed loop sys-
tem shows improved accuracy with the H∞ controller relative
to the LQR controller, although they both achieve the desired
frequency response. Therefore, without providing a specified
margin for the frequency, adequate frequency response with
robustness in the presence of disturbances can be achieved
by setting the desired inertia based on the network operating
point. The proposed technique is analyzed for different SCR
scenarios where a lower bound to guarantee the performance
is obtained.

APPENDIX A

Variables are in per unit unless specified otherwise. Sbase =
1.1 MVA, Vbase = 575 V, f̄ = 377 (rad⁄s).

Operating condition: Wind speed: 11 m/s, Pg = 0.8, Qg =
0, Vds = 0, Vqs = 1.

Equilibrium point for the linearization: (for the dynamic
equations) λds = 1.015, λqs = 0.002, λdr = 1.041, λqr =
0.223, ωr = 1.19 , x1 = −0.641, x2 = 0.261, x3 = 0.011,
x4 = 0.005.

(For the algebraic equations) ids = 0.084, iqs = −0.631,
idr = 0.261, iqr = 0.671, Vqr = −0.196, Vdr = 0.048.

Diesel generator: rated power = 1 MW, HD = 1 (s), τsm =
0.1 (s), τd = 0.2 (s).

Wind turbine generator: rated power = 1 MW, Hw = 2 (s),
τsm = 0.1 (s), τd = 0.2 (s), KIτ = 0.1, KPc = 0.6, KIc = 8,
KIQ = 5, KPQ = 1.
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