
Robust Scheduling of Microgrids Considering
Unintentional Islanding Conditions

Guodong Liu, Max Ferrari, Ben Ollis, Aditya Sundararajan
Grid Component & Controls Group

Oak Ridge National Laboratory

Oak Ridge, USA

Email: {liug, ferrarimagmf, ollistb, sundararajaa}@ornl.gov

Kevin Tomsovic
Dept. of Electrical Engineering and Computer Science

The University of Tennessee

Knoxville, USA

Email: tomsovic@utk.edu

Abstract—This paper proposes a robust scheduling model for
microgrids considering the stochastic unintentional islanding con-
ditions. The proposed model minimizes the total operating cost
of the microgrid by efficiently coordinating the supply of power
from local distributed energy resources and the main grid. To
capture the prevailing uncertainties in renewable generation and
demand as well as unintentional islanding conditions, a two-stage
adaptive robust optimization model is formulated to minimize the
total operating cost under the worst realization of the modeled
uncertainties. The column and constraint generation (C&CG)
method is used to solve the problem in an iterative manner.
The solution of the proposed scheduling model ensures robust
microgrid operation in consideration of all possible realization
of renewable generation, demand and unintentional islanding
condition. Numerical simulations on a microgrid consisting of
a wind turbine, a PV panel, a fuel cell, two micro-turbines, a
diesel generator and a battery demonstrate the effectiveness of
the proposed approach.

Index Terms—Robust optimization, microgrid scheduling, un-
certainty, islanding, mixed-integer linear programming (MILP)

NOMENCLATURE

The main symbols used in this paper are defined below.

Others will be defined as required in the text. A bold symbol

stands for its corresponding vector.

A. Indices

i Index of dispatchable generators, running from 1

to NG.

d Index of demands, running from 1 to ND.

b Index of battery storage devices, running from 1

to NB .

w Index of wind turbines, running from 1 to NW
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v Index of PV, running from 1 to Nv

t Index of time periods, running from 1 to NT .

B. Variables

1) Binary Variables:

uit 1 if unit i is scheduled on during period t and 0

otherwise.

ZG
t 1 if microgrid is grid-connected and 0 otherwise.

2) Continuous Variables:

Pit Power output scheduled from dispatchable unit i
during period t.

PPCC
t Exchanged power at PCC during period t.

PC

bt , P
D

bt Charging/discharging power of battery b during

period t.
SOCbt State of charge of battery b during period t.
PW
wt Power output of wind turbine w during period t.

PPV
vt Power output of PV panel v during period t.

PL

dt Power consumption scheduled for demand d dur-

ing period t.
PLS

dt Load shedding of demand d during period t.
µwt, µwt Auxiliary variables for uncertainty of wind power

PW
wt .

µvt, µvt Auxiliary variables for uncertainty of PV power

PPV
wt .

µdt, µdt Auxiliary variables for uncertainty of demand PL

dt.

C. Constants

Cbt Degradation cost of battery b during period t.
CON

it Fixed operation cost of DG i during period t.
λit Generation cost of DG i during period t.
λPCC
t Purchasing/selling price of energy from/to distri-

bution grid during period t.
Pmax
i , Pmin

i Maximum/minimum output of DG i.
Rmax

i Maximum ramping up/down rate of unit i.
ˆPW
wt Forecasted output of wind turbine w in period t.
ˆPPV
vt Forecasted output of PV panel v in period t.

P̂L

dt Forecasted consumption of demand d in period t.

PC,max

b , PD,max

b Maximum charging/discharging power of

battery b.
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SOCmax

bt , SOCmin

bt Maximum/minimum state of charge of

battery b during period t.
ηCb , η

D
b Battery charging/discharging efficiency factor.

δWwt, δ
PV
vt , δLdt Maximum deviation from the nominal forecast

values ˆPW
wt , ˆPPV

vt and P̂L

dt.

ΓP
t Robust control parameter of renewable generation

and demand during period t.
ΓG Robust control parameter of unintentional island-

ing conditions.

△t Time duration of each period.

αdt Maximum percentage of load shedding of demand

d during period t.

I. INTRODUCTION

A microgrid can be defined as a low voltage distribution

network comprising various distributed generators (DGs), en-

ergy storage systems (ESSs) and loads that can be operated in

both grid-connected and islanded modes [1]. From the point of

view of the grid, a microgrid can be regarded as a controllable

element which is connected to the utility distribution network

at the Point of Common Coupling (PCC). A microgrid can

not only exchange power with the utility grid, but also provide

various ancillary services, e.g., frequency regulation, voltage

support, virtual inertia, etc., to the utility grid that a conven-

tional end-user system cannot [2], [3]. From the point of view

of customers, a microgrid can reduce carbon emission and

improve energy efficiency. More importantly, a microgrid can

improve the reliability of local electricity supply by islanding

from the distribution grid during an grid disturbance, and

continuing to supply its islanded portion [4]. Due to such

benefits, microgrids have attracted growing attention from both

academia and industry [5].

Comparing with intentional islanding, i.e., a microgrid

intentionally separates itself from the utility grid in case of

foreseeable utility disturbances, unintentional islanding, i.e.,

a microgrid unintentionally separates itself from the utility

grid driven by unforeseeable utility disturbances, is more

important for reliability improvement since the vast majority of

utility disturbances are unpredictable. Generally, a microgrid

imports/exports power from/to the distribution grid in grid-

connected mode, and this power is instantaneously forced

to be zero when the microgrid is unintentionally islanded.

Under this circumstance, the transition of microgrid from grid-

connected to islanded mode often requires quick adjustment

of the power output of already committed DGs and ESSs,

even load shedding as the last resort to mitigate the power

imbalance caused by unintentional islanding. To reduce load

shedding and have the microgrid prepared for possible un-

intentional islanding, certain DGs should be committed and

the ESSs should be charged to certain level. However, the

occurrence time and duration of the unintentional islanding

are uncertain. In addition, the uncertainties in the forecasting

of renewable generation and load makes the problem more

challenging. Therefore, development of new scheduling meth-

ods considering stochastic unintentional islanding conditions

of microgrids and probabilistic characteristics of load and

renewable generation is necessary for achieving the reliability

benefit of microgrids.

So far, research work on scheduling of microgrids consider-

ing unintentional islanding conditions could be divided into t-

wo categories: stochastic optimization and robust optimization.

For the first category, the adequacy constraints are considered

to ensure sufficient operating margin to cover critical loads

in case of upstream network faults in [6]. A more general

microgrid scheduling model with chance-constrained islanding

capability is proposed in [7]. However, neither [6] nor [7]

considers the islanding duration of microgrids. The islanding

duration is modeled as scenarios through enumeration in [8].

Nevertheless, [6], [7], [8] require the probability distributions

of uncertainties, which are difficult to obtain in practice. As

to the second category, a robust optimization-based microgrid

scheduling model with reserve requirements is proposed in

[9]. The uncertainties of renewable generation and load are

considered in [10]. However, the duration of the unintentional

islanding has been neglected. A pre-set islanding duration is

considered in [11], [12]. However, the charging/discharging

status of ESSs is assumed same as normal operation after

islanding in order to keep the inner-stage of the max-min

problem linear. In [13], both occurrence time and duration of

unintentional islanding are included in the microgrid schedul-

ing problem through a two-stage robust optimization model.

However, the load shedding has been ignored.

In view of the shortcomings of the existing literature, a ro-

bust optimization model for microgrids scheduling considering

the stochastic unintentional islanding conditions is proposed

in this paper. The microgrid is guaranteed to supply critical

demands continuously through quickly adjusting the output

of committed DGs and load shedding when unintentional

islanding happens. To capture the uncertainties in renewable

generation, demand and the occurrence time and duration of

the unintentional islanding, a two-stage robust optimization

model is formulated to minimize the total operating cost under

the worst realization of the modeled uncertainties. The column

and constraint generation (C&CG) algorithm is used to solve

the problem. The solution ensures robust microgrid operation

in consideration of all possible realization of renewable gen-

eration, demand and unintentional islanding conditions. The

main contributions of this paper are as follows:

1) A new scheduling model for microgrids considering

the stochastic unintentional islanding conditions is pro-

posed. The microgrid is guaranteed to supply critical

demands continuously through quickly adjusting the

output of committed DGs and load shedding in case of

unintentional islanding.

2) Considering the uncertainties of renewable generation,

load, and the occurrence time and duration of uninten-

tional islanding, a two-stage robust optimization model

is formulated and solved using the C&CG algorithm.

The reminder of the paper is organized as follows. Section II

introduces the proposed two-stage robust microgrid scheduling

model considering the stochastic unintentional islanding con-
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ditions. Results of case studies are presented in Section III.

Finally, Section IV concludes the paper with major findings.

II. MATHEMATICAL FORMULATION

A. Microgrid Modeling

Generally, a microgrid includes dispatchable and undis-

patchable generators, ESSs and loads. The dispatchable gener-

ators, such as diesel generators, microturbines and fuel cells,

could change their power output according to the dispatch

order of the microgrid controller, while undispatchable gen-

erators, such as wind turbines and PV panels, have uncertain

power output depending on the meteorological conditions

of wind speed, temperature and solar irradiance. There has

been extensive existing literature focused on wind and PV

power forecasting. However, the forecast accuracy declines

quickly as the lead time increases. Typically, the wind power

forecast error is around 10% for hour-ahead forecasting,

over 20% for day-ahead forecasting, and even higher for a

longer lead time [14]. The forecast error of PV generation

is even higher since the PV power output is greatly affected

by the cloud coverage with very random pattern. In this

paper, the renewable generation and demand are modeled as

independent, symmetric and bounded random variables with

unknown probability distributions. The models of microgrid

components are discussed in detail in [7]. The focus of this

paper is to ensure the microgrid being ready to perform a

seamless islanding considering the uncertainties of renewable

generation, demand, and occurrence time and duration of the

unintentional islanding.

B. Deterministic Microgrid Scheduling

This subsection describes the model of the deterministic

microgrid scheduling. The objective is to minimize the total

operating cost of the microgrid over the scheduling horizon as

shown in (1). Specifically, the first line is the operating cost of

DGs (including start-up cost, shut-down cost, and fuel cost);

the second line is the energy purchasing cost (or benefit of

selling energy to the utility); the third line is the degradation

cost of the ESSs; and the fourth line is the cost of load

shedding. All terms are in mixed-integer linear form except

the start-up cost SU
it and shut-down cost SD

it , which can be

recast into mixed-integer linear form as in [15].

min

NT
∑

t=1

NG
∑

i=1

[

SU

it + SD

it + CON

it uit + λitPit

]

+

NT
∑

t=1

λPCC

t PPCC

t

+

NT
∑

t=1

NB
∑

b=1

Cbt

(

PC

bt + PD

bt

)

+

NT
∑

t=1

ND
∑

d=1

CLS

dt P
LS

dt (1)

The objective function is subject to the following constraints:

Pmin

i uit ≤ Pit ≤ Pmax

i uit ∀i, ∀t (2)

0 ≤ PC

bt ≤ PC,max

b ∀b, ∀t (3)

0 ≤ PD

bt ≤ PD,max

b ∀b, ∀t (4)

SOCbt = SOCb,t−1 + PC

btη
C

b △t− PD

bt

1

ηDb
△t ∀b, ∀t (5)

SOCmin

bt ≤ SOCbt ≤ SOCmax

bt ∀b, ∀t (6)

∑NG

i=1
Pit +

∑NW

w=1
PW
wt +

∑NPV

v=1
PPV
vt + PPCC

t

+
∑NB

b=1
PD

bt −
∑NB

b=1
PC

bt =
∑ND

d=1

(

PL

dt − PLS

dt

)

∀t (7)

−ZG

t PPCC,max

t ≤ PPCC

t ≤ ZG

t PPCC,max

t (8)

0 ≤ PLS

dt ≤ αdt%P̂L

dt ∀i, ∀t (9)

Constraint (2) is the minimum and maximum power constraint

of DGs. It also forces the output of a DG to be zero if it is

not committed. For ESSs, the maximum charging/discharging

power of an ESS are specified by constraints (3) and (4). The

state of charge (SOC) of an ESS in current time interval is

defined as the SOC in previous time interval plus the energy

charged or minus the energy discharged as in constraint (5).

The SOC of an ESS is limited by constraint (6). The generation

and demand is balanced in grid-connected mode, which is

enforced by (7). The PCC power is limited by constraint (8).

It also forces the PCC power to be zero if the microgrid is

islanded. The maximum percentage of load shedding of each

demand is limited by constraint (9).

C. Robust Microgrid Scheduling

This subsection describes the robust counterpart of the

deterministic microgrid scheduling. As mentioned earlier,

PW
wt , PPV

vt and PL

dt are modeled as independent, symmet-

ric and bounded random variables which take value in
[

ˆPW
wt − δWwt,

ˆPW
wt + δWwt

]

,
[

ˆPPV
vt − δPV

vt , ˆPPV
vt + δPV

vt

]

and
[

P̂L

dt − δLdt, P̂
L

dt + δLdt

]

with δWwt, δPV
vt and δLdt nonnegative.

The commitment status of DGs are first-stage decisions, which

are determined at the beginning of the scheduling horizon

to hedge all possible uncertainties of renewable generation

and demand as well as unintentional islanding, while the

PCC power, output of DGs, charging/discharging power of

ESSs and load shedding are second-stage variables, which

are determined after the uncertainties are revealed. The robust

counterpart is formulated in min-max-min form, which guar-

antees the solution is feasible for all possible uncertainties and

performs well for the worst case.

min
u∈U

NT
∑

t=1

NG
∑

i=1

SU

it + SD

it + CON

it uit

+ max
ZG,PW,PPV,PL∈W

min
P,PPCC,PC,PD,PLS∈X

{

NT
∑

t=1

NG
∑

i=1

λitPit +

NT
∑

t=1

λPCC

t PPCC

t

+

NT
∑

t=1

NB
∑

b=1

Cbt

(

PC

bt + PD

bt

)

+

NT
∑

t=1

ND
∑

d=1

CLS

dt P
LS

dt

}

(10)
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s.t. U = {u : uit ∈ {0, 1} , ∀i, t; } (11)

W =
{

P
W : PW

wt =
ˆPW
wt − µwtδ

W

wt + µwtδ
W

wt, ∀w, t

P
PV : PPV

vt = ˆPPV
vt − µvtδ

PV

vt + µvtδ
PV

vt , ∀v, t

P
L : PL

dt = P̂L

dt − µdtδ
L

dt + µdtδ
L

dt, ∀d, t

µwt, µwt, µvt, µvt, µdt, µdt ∈ [0, 1] , ∀w, v, d, t

NW
∑

w=1

(

µwt + µwt

)

+

NPV
∑

v=1

(

µvt + µvt

)

+

ND
∑

d=1

(

µdt + µdt

)

≤ ΓP

t , ∀t

Z
G :

NT
∑

t=1

(

1− ZG

t

)

≤ ΓG, ZG

t ∈ {0, 1} , ∀t

ZG

t ≤ 1− (ZG

t−1 − ZG

t ),

∀t ∈
[

1,min
(

NT , t+ ΓG − 1
)]}

(12)

X =
{

P,PPCC,PC,PD,PLS : (2)− (9)
}

(13)

W represents the uncertainty set. Note that the randomness

of wind and PV power as well as demand are modeled as

polyhedrons. The aggregated effect over multiple uncertainties

are modeled by a budget constraint. ΓP
t is a robust control

parameter, which takes values in [0, NW +NPV +ND]. We

are interested in finding an optimal solution that is protected

against all scenarios in which up to
⌊

ΓP
t

⌋

of these uncertain

coefficients µ are allowed to change, and one coefficient

changes by at most (Γt − ⌊Γt⌋)µ. It is guaranteed that if

nature behaves like this then the robust solution will be feasible

deterministically. If Γt = 0, the uncertainties are completely

ignored, while if Γt = NW + NPV + ND, all uncertainties

in renewable generation and demands are fully considered,

leading to the most conservative solution. By this way, the

microgrid controller could adjust the degree of conservatism

of the solution based on their risk aversion. Similarly, ΓG

is a robust control parameter for the unintentional islanding

condition, which takes value in [0, NT ]. It guarantees that

optimal solution is protected against all scenarios in which up

to ΓG time intervals are islanded. If ΓG = 0, all ZG
t will be 1,

i.e., no unintentional islanding is allowed, while if ΓG = NT ,

the microgrid is assumed to be islanded for the whole time,

leading to the most conservative solution.

U is the feasible set for the binary commitment status

of DGs, and X is the feasible region for the PCC power,

output of DGs, charging/discharging power of ESSs, and load

shedding. It should be noted that only the first stage decision

are implemented and the second stage decisions would be

re-optimized and implemented when the uncertainty is better

known base on the forecasts with short lead time.

The proposed two-stage robust microgrid scheduling is

actually a tri-level optimization in the form of “min-max-

min”. It cannot be solved directly since the three optimization

levels impact each other. Generally, there are two solution

algorithms for optimization problems with a “min-max-min”

structure: Benders decomposition with dual cutting planes

Fig. 1: Modified ORNL DECC microgrid system

[16] and the C&CG algorithm [17]. Comparing with Benders

decomposition, the C&CG algorithm generates primal cutting

planes to accelerate the convergence. For this reason, the

proposed two-stage robust microgrid scheduling is solved

using C&CG algorithm.

III. CASE STUDIES

A. Test System Data

The proposed two-stage adaptive robust scheduling model

considering stochastic unintentional islanding conditions was

demonstrated on a modified Oak Ridge National Laborato-

ry (ORNL) Distributed Energy Control and Communication

(DECC) microgrid test system as shown in Fig. 1. The mod-

ified system includes various DGs and ESS. The parameters

for the dispatchable generators are taken from [10]. Due to

the relatively small capacity of generators, their minimum up

and down time are neglected.

The forecast wind and PV power are taken from [10]. A

forecast error of ±35% for wind power and ±35% for PV

power is considered. The capacity of the battery is 100 kWh

with a maximum charging/discharging power of 50 kW. The

battery efficiency is assumed to be 0.9. The minimum and

maximum SOC of the battery is 25% and 95%, respectively.

The initial SOC and final SOC are assumed both 50%. The

battery degradation cost is set as 0.02 $/kW. The maximum

power at PCC is set as 200 kW. The forecast total demand

and day-ahead market prices are the same as in [10]. The

total demand is equally divided into 2 loads. A forecast error

of ±9% for each load is considered.

The analysis is conducted for a 24-hour scheduling horizon

and each time interval is set to be 1 hour. All numerical

simulations are coded in MATLAB and solved using the MILP

solver CPLEX 12.6 [18]. With a pre-specified optimality gap

of 0.1, it takes only a few iterations for the algorithm to

converge and the running time of each case is less than 1

minutes on a 2.66 GHz Windows-based PC with 4 GB of

RAM.

B. Effects of Unintentional Islanding Conditions

For easy illustration, we define a new parameter, i.e.,

robustness level, as Γ = ΓG/NT . Thus, Γ = 0 means no

unintentional islanding is allowed and Γ = 1 means the

microgrid is assumed to be islanded for the whole scheduling
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(a) Γ = 0 (b) Γ = 0.25 (c) Γ = 0.5 (d) Γ = 0.75 (e) Γ = 1

Fig. 2: Comparison of total capacity of committed DGs and worst unintentional islanding condition under various values of Γ

(a) Total Operating Cost (b) Total Load Shedding

Fig. 3: Comparison of total operating cost and amount of load

shedding under various values of Γ

horizon. The results of proposed adaptive robust microgrid

scheduling with stochastic unintentional islanding conditions

are compared in this subsection. The total capacity of com-

mitted DGs and worst realization of unintentional islanding

condition under various values of Γ are compared in Fig. 2.

As can be seen, no DGs are committed when Γ = 0, due to the

relatively low utility rate comparing with generation cost of

DGs. As Γ increase, longer duration of unintentional islanding

is considered. As a result, more DGs need to be committed to

ensure the microgrid being prepared for all possible islanding

events. When Γ = 1, all DGs are committed.

The total operating cost and total amount of load shedding

under various values of Γ are compared in Fig. 3. With

Γ increases, the power generated by DGs are increased to

mitigate the power at PCC in case of islanding. Thus, the

total operating cost increases, i.e., the reliability of microgrids

is improved at the cost of increased operating cost. If the

DGs and ESSs cannot supply all loads, load shedding will

be necessary. As can be seen, the amount of load shedding

increase significantly as the unintentional islanding condition

is considered at first. However, the growth of load shedding

slows down as Γ further increases.

IV. CONCLUSIONS

A two-stage adaptive robust optimization model consider-

ing stochastic unintentional islanding conditions is proposed

and validated in this paper. Future work includes expanding

islanding capability from simple power balance constraint to

power flow constraint and dynamic stability constraint. In

addition, the solution efficiency of C&CG algorithm in large

and meshed microgrids will be investigated.
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