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H I G H L I G H T S  

• A mathematically rigorous two-stage repair and restoration algorithm is proposed. 
• The algorithm considers the coupling of repair, reconfiguration, and DER dispatch. 
• The first stage determines the optimal repair sequence of faulted lines. 
• The second stage re-dispatches the DER output based on the latest load consumption.  
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A B S T R A C T   

In this paper, a post-disaster distribution system repair and restoration (DSRR) strategy is proposed to improve 
distribution system resilience. The DSRR strategy is formulated as a two-stage optimization. The first stage is a 
comprehensive co-optimization of repair crew scheduling, dynamic network reconfiguration, and distributed 
energy resource (DER) dispatch based on the forecast load profile. The goal is to minimize the accumulative 
operating cost caused by the load reduction payment as well as DER operating cost. In particular, since the 
number of available repair crews is usually smaller than the number of faulted lines after a disaster event, the 
DSRR strategy determines the optimal scheduling for repairing faulted lines. The second stage is a re-dispatch of 
the DER power output and load shedding based on the real-time load demand of each bus. The proposed al-
gorithm is validated by case studies of the IEEE 33-bus and 123-bus test systems. We consider those scenarios in 
which faults occur in multiple heavy-loaded feeders. The simulation results demonstrate that the DSRR strategy 
effectively coordinate the repair scheduling, network reconfiguration and load shedding to minimize the oper-
ating cost.   

1. Introduction 

Power system resilience is the grid’s ability to withstand and rapidly 
recover from high-impact low-probability events, such as hurricanes, 
earthquakes, and deliberate threats [1–3]. A system-level power outage 
after an extreme event can cause significant inconvenience and 

economic loss to customers. For example, in 2017, power outages due to 
hurricanes Harvey, Irma, and Maria caused a total economic loss of 
around $202 billion in the U.S. [4]. It is essential for utilities to quickly 
restore the unserved load by making use of repair crews, normal-open tie 
lines, and distributed energy resources (DERs). The distribution system 
repair and restoration (DSRR) algorithm solves for this problem [5]. 

Previous works have been conducted on network reconfiguration 
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and DER scheduling for the resilient operation of distribution systems. 
One major approach is to split the on-outage part of the system into self- 
supplied microgrids [6–9]. The authors in [7] proposed a master–slave 
DER and network reconfiguration method to maximize the restored 
load. The study in [8] proposed a two-stage restoration strategy, in 
which the first stage determines the post-restoration topology and the 
second stage schedules the restored load. The study in [10] proposed a 
heuristic-searching-based radial constraint for post-disaster restoration. 
Overall, the above approaches were focused on network reconfiguration 
and DER scheduling. However, the restoration strategies in [6–10] 
neither considered the optimal repair crew scheduling nor made use of 
the repaired components until all of them are repaired. Hence, there is 
still room for reducing the operating cost in the DSRR period. 

After a severe natural disaster, the number of faulted lines is usually 
larger than the number of repair crews, and the optimal sequence of 
repairing lines can lead to the largest amount of load to be restored in 
the DSRR period. Dispatching repair crews based on operators’ experi-
ence may not lead to an optimal plan for post-disaster restoration. 
Hence, there is a need to develop a mathematically rigorous strategy to 
optimally coordinate repair crew scheduling, network reconfiguration, 
and DERs to minimize the post-disaster operating cost. In [11,12], a 
restoration framework was proposed to generate an optimal switching 
sequence after N-k line faults in the distribution system. However, the 
application scenario of this framework is a cascading failure rather than 
physical damage to distribution lines. Day-ahead pre-disaster restora-
tion planning aims to minimize the operating cost by dispatching repair 
resources. The problem can be formulated as a two-stage stochastic 
programming problem [13] or a bi-level robust optimization problem 
[14] to address random scenarios. In recent years, the post-hurricane 
DSRR strategy has drawn much attention, as in [15]. Soft precedence 
constraints were introduced to mitigate the NP-hard problem and to 
improve computational efficiency. However, the DER dispatch was not 
considered in the restoration process. The study in [16] proposed a two- 

stage DSRR strategy. The first stage clustered repair tasks considering 
the traveling distance of crews, while the second stage co-optimized the 
repair crews, network reconfiguration, and DER dispatch based on the 
deterministic load demand. The study in [5] formulated the DSRR as a 
two-stage stochastic programming considering the uncertainty of repair 
time and load profile. The first stage finds the optimal sequence of repair 
crews, and the second stage completes service restoration using recon-
figuration and DERs. The authors in [17] proposed a tri-stage DSRR 
strategy to handle the uncertainty of load profile and repair time. The 
study considers an unbalanced distribution system model and a more 
detailed crew model (e.g., line repair crew and tree removal crew) for 
the restoration. In fact, the two-stage stochastic optimization adopted in 
[5,17] is an effective approach to power system long-term planning 
problems, it is not necessarily applicable to operation problems for two 
reasons: 1) The solution of stochastic programming results in high 
computational workload, while the operation problem requires quick 
solution for dispatch action; 2) The two-stage formulation essentially 
solves for the expected optimal solution under all stochastic scenarios, 
while does not ensure optimal solution for a single scenario [20,21]. 

To summarize, repair crew scheduling is coupled with network 
reconfiguration and load shedding during the restoration process. Since 
the two dispatch behaviors involve many time-dependent constraints, 
they should be determined in the beginning to achieve a global opti-
mization. This paper proposes a mathematically rigorous two-stage 
DSRR algorithm for improved resilience against hurricanes. By making 
full use of repair crews, switchable tie lines, and DERs, the algorithm can 
solve for a global optimal restoration with regard to N-k contingencies. 
The innovations of this paper are summarized as follows:  

• The first stage of the DSRR strategy aims to determine the line repair 
sequence and dynamic network reconfiguration to minimize the 
system operating cost during the restoration period. A set of simple 
linear constraints is proposed to characterize the behavior of repair 

Nomenclature 

Operator 
|.| Dimension of a vector 
⌈⌉ Rounding up sign 
(x̂) The forecast value of parameter x 

Indices and sets 
t, ΩT Index and set of timeslots 
j, ΩN Index and set of buses 
ΩN,G ⊂ ΩN Set of buses with fuel-based distributed generators (DGs) 
ΩN,C ⊂ ΩN Set of buses with shunt capacitors 
ΩN,E ⊂ ΩN Set of buses with battery energy storage system (BESS) 
(i, j), ΩB Index and the set of lines 
ΩB,Ns ⊂ ΩB Set of lines without remote-controlled switch (RCS) 
ΩB,Fa ⊂ ΩB Set of faulted lines 

Parameters 
cG Operation cost of the fuel-based generator 
cL Payment for load shedding 
Trep

ij Time consumption for reaching the faulted line (i, j) and 
repairing it 

Nrep Number of available line repair crews 
Nsw Maximal number of switch status change 
δ(j) / π(j) Set of child/parent buses of bus j 
PGmax

j Generator output upper limit at bus j 
PL

j Daily peak load at bus j 

P̂
L
j,t/Q̂

L
j,t Real/reactive load demand at bus j, time t (forecast values) 

PL
j,t/QL

j,t Real/reactive load demand at bus j, time t (practical 
values) 

QC,rated
j Rated reactive power output of capacitor j 

Rij / Xij Resistance/inductance of line (i, j) 
Smax

ij Thermal limit of line (i, j) 
Vmax/Vmin Maximal/minimal bus voltage 
Vsub Substation secondary voltage 

Variables 
νij,t Repair state variable of line (i, j) at time t; 1 if being 

repaired by a crew, 0 otherwise 
yij,t Outage state variable line (i, j) at t; 1 if having been 

repaired, 0 otherwise 
µij,t Outage state change variable of line (i, j) at t; 1 if yij,t-1 =

0 and yij,t = 1, 0 otherwise 
zij,t Switching state variable of non-faulted (or repaired) line (i, 

j); 1 if closed, 0 otherwise 
sij,t Binary variable indicating the state change of zij,t; 1 if zij,t-1 

∕= yij,t, 0 otherwise 
Fij Power flow of line (i, j) in the virtual network 
PG

j,t DG power output at bus j, time t 
ΔPL

j,t Load shedding at bus j, time t 
QC

j,t Reactive power output of the shunt capacitor at bus j, time t 
PBdch

j,t BESS discharging power at bus j, time t 
EB

j,t BESS remaining energy at bus j, time t 
Pij,t /Qij,t Real/reactive power flow of line (i, j), time t 
Vj,t Voltage at bus j, time t  
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crew dispatch. The method makes a good trade-off between accuracy 
and computational workload by simplifying crew routing 
constraints. 

• Based on the optimal repair sequence and reconfiguration, the sec-
ond stage is hourly re-dispatch of DGs and load shedding based on 
the latest load consumption at each bus. This approach mitigates the 
generation-load mismatch that is caused by the load/PV forecast 
error. 

The rest of the paper is organized as follows. Section 2 introduces the 
application background of the distribution system restoration. Section 3 
proposes the two-stage DSRR algorithm that determines the optimal 
repair sequence and the dynamic network reconfiguration. Section4 
presents the numerical study results to validate the proposed algorithm. 
Finally, Section 5 concludes the paper and introduces future research 
directions. 

2. Background of post-disaster restoration 

The design of an optimal DSRR strategy largely depends on a detailed 
analysis of the application background, including the characteristics of 
the disaster, the distribution system infrastructure, and the routing 
features of repair crews. 

2.1. Hurricane characteristics 

The distribution system infrastructure is vulnerable to extreme 
weather events, especially hurricanes. Generally, coastal areas suffer the 
most severe damage in hurricane events [22,23]. The radial distribution 
of wind speed in a hurricane is shown in Fig. 1 [24]. The wind is 
strongest at the eyewall (at the distance of 22 km). The moving speed of 
a hurricane eye ranges from 20 to 30 km/hour. As a consequence, it may 
take a few hours for the hurricane eye to sweep over a distribution 
system. In consideration of safety, repair crews start working on the 
faulted lines only after the hurricane eye moves away and all the dis-
tribution system damages are identified. Therefore, it is reasonable to 
assume that the hurricane only does not cause further damage to a 
distribution system after the DSRR starts. 

2.2. Characteristics of distribution system operation 

The proposed DSRR strategy is based on the following assumptions 
with regard to the distribution system operation.  

• The upstream transmission system normally operates in extreme 
weather. This assumption is based on the statistical data that 90% of 
the unscheduled line faults in the U.S. occur in distribution systems 
[25].  

• The faulted line can be located by the fault indicator [17,26]. Also, 
some portions of lines in the distribution system are equipped with 

remote-controlled switches (RCSs) that can receive control signals 
from the distribution system operator (DSO) [28]. The DSO is able to 
control the load of each bus.  

• The battery energy storage system (BESS) and fuel-based DG operate 
at unity power factor and, thus, do not participate in volt-var control 
[27]. 

2.3. Routing of repair crew 

After natural disasters, the DSO will dispatch repair crews to replace 
damaged distribution poles and to fix faulted lines. After a natural 
disaster, it is necessary to determine the optimal repair sequence in 
order to minimize the operating cost. An example of repair crew routing 
is shown in Fig. 2. In this event, there are three faults and one available 
repair crew. The repair sequence is determined as: The repair crew 
travels from the depot to Fault #2, Fault #3, and Fault #1 in turn to 
repair the damaged components. The total time consumption for a repair 
action (Trep

ij ) consists of two parts, given in. 

Trep
ij = Ttr

ij,p +Trep
ij , ∀(i, j) ∈ ΩB,Fa (1)  

where Ttr
ij,p is the travel time from a position p to the faulted line (i, j), and 

p can be the repair crew depot (central crew stations) or the last faulted 
line being repaired; Trep

ij is the forecast time consumption to repair the 
line (i, j). The detailed forecast method was introduced in [29]. In the 
urban area, a distribution system is usually geographically within 10 
km. Even if considering a low traveling speed of trucks that caring the 
repair crew and goods (20 km/hour), the traveling time between any 
two locations within the distribution system (Ttr

ij,p) is below 0.5 h. Since 

the repair time is usually 3–8 h [29,30], there isTtr
ij,p⩽Trep

ij . Therefore, Trep
ij 

can be approximated by a constant value without considering the trav-
eling path, as given by. 

Trep
ij = ⌈Ttr + Trep

ij ⌉, ∀(i, j) ∈ ΩB,Fa (2) 

The rounding up sign ⌈⌉ provides the repair action with a time 
margin and eliminates the forecast error ofTrep

ij . For example, if Ttr +Trep
ij 

is forecast to be 5.3 h, then the DSO assumes it takes Trep
ij = 6 h to repair 

the line (i, j). The repair crew can finish the work on time even if the 
repair action has an error of 0.7 h. 

Based on the above analysis, the following assumptions are made in 
order to simplify the optimization algorithm. 

Fig. 1. Radial wind speed profile of a hurricane eye: An example.  Fig. 2. Illustration of repair crew path.  
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• The working efficiency of different repair crews is the same. In other 
words, different repair crews take the same time Trep

ij to repair the 
same faulted line (i, j) [15]. The DSO is able to locate the faulted lines 
and to estimate Trep

ij [17].  
• Damage to the road network does not have an obvious impact onTtr

ij,p. 
This is because the repair crew truck has multiple routing options to 
reach the same destination via the road network [31]. 

3. Operational planning of repair and restoration 

The DSRR is a co-optimization of 1) repair crew scheduling, 2) dy-
namic network reconfiguration that is coupled with line repair status, 
and 3) DER scheduling and load shedding. The feature of those three 
groups of decision variables can be summarized as follows.  

• Decision variable of repair scheduling: The repairing of a faulted line 
takes multiple hours or time steps. Thus, the scheduling of repair 
crews involves inter-time-step constraints. Once the scheduling of 
crews is executed, it is not feasible to re-dispatch it when the line 
repair is ongoing. 

• Decision variable of network reconfiguration: The network reconfigu-
ration is implemented by the change of switching states. Since there 
is an upper limit of switching state change (given by Eq. (17)), it is 
not feasible to re-dispatch the network reconfiguration at each time 
step.  

• Decision variable of power output/demand: The fuel-based DG is started 
to serve the local load. Meanwhile, part of load is curtailed due to the 
limited capacity of DG. These two decision variables are independent 
among different time steps. 

Based on the features of post-disaster operation of distribution sys-
tem, this paper proposes a two-stage DSRR strategy to minimize the cost 
of DG operation and load shedding. As shown in Fig. 3, the first stage 
determines the repair scheduling, dynamic reconfiguration, and DG 
output/load shedding based on the forecast of load demand and PV 
power output. However, the forecast error may cause a violation of the 
load reduction limit and line thermal limit when the decision variable is 
executed at later time steps. Therefore, the second stage re-dispatch is 
proposed to avoid this violation. At each time step, the decision maker 
executes the repair scheduling and network reconfiguration decisions 
made in the first stage, while adjusts the DG and load shedding decision 
based on the latest PV output and load demand. 

3.1. Co-Optimization of Repair, reconfiguration and DER 

The first stage of the proposed DSRR strategy performs multi-time- 
interval scheduling in order to minimize the expected operating cost. 

3.1.1. Objective function 
The objective function is formulated as Eq. (3), which consists of the 

operating cost of fuel-based DGs and the cost of unserved loads. Δt is the 
scheduling time interval. 

min.
∑

t∈ΩT

Δt

(
∑

j∈ΩN,G

cG P̂
G
j,t +

∑

j∈ΩN

cLΔP̂
L
j,t)

)

(3) 

During the period ΩT, the network topology may change at any hour. 
However, the total number of switch changes in one line can be 
restricted. Indeed, supplying as much electricity to loads as possible 
under extreme weather conditions is more important than reducing the 
operating expense of DGs. However, since the per-kWh generation cost 
is usually lower than the load shedding cost in (3), the operating cost 
minimization is equivalent to the load shedding minimization, which is 
a measure of resilience against extreme weather. This is the justification 
for including both the DG term and the load term in (3). 

3.1.2. Repair crew scheduling constraints 
In this paper, we consider a case wherein multiple crews work 

simultaneously and independently on the repair of separate lines. The 
constraints for optimal repair crew dispatching are given by (4)–(9). 
Since equations (4)–(34) are all time-dependent, the expression ∀t ∈ ΩT 
behind each equation is omitted for simplicity. 

μij,t = 0, ∀(i, j) ∈ ΩB,Fa, t⩽Trep
ij (4)  

yij,t =
∑t

τ=1
μij,τ, ∀(i, j) ∈ ΩB,Fa (5)  

zij,t⩽yij,t, ∀(i, j) ∈ ΩB,Fa (6)  

∑|ΩT |

t=1
νij,t = Trep

ij , ∀(i, j) ∈ ΩB,Fa (7)  

− M1
(
1 − μij,t

)
⩽
∑t− 1

τ=t− Trep
ij

νij,τ − Trep
ij ⩽0, ∀(i, j) ∈ ΩB,Fa (8)  

∑

∀ij
νij,t⩽Nrep, ∀(i, j) ∈ ΩB,Fa (9) 

Constraint (4) initializes the status of faulted lines. Even if the faulted 
line (i, j) is assigned to be repaired first, the line stays open during the 
beginning Trep

ij hours. Constraint (5) indicates that the faulted line be-
comes available after it is repaired and remains available in all subse-
quent hours. Constraint (6) connects the line switch availability and the 
distribution system reconfiguration. If the faulted line (i, j) is normal 
(yij,t = 1), then the line switching state is a free binary variable (either on 
or off). Otherwise, the line will be open if it is not repaired (yij,t = 0). 
Constraint (7) means that during the DSRR period ΩT, the total number 
of hours spent on the faulted line (i, j) equals the predicted timeTrep

ij . 
Constraint (8) indicates that the repair crew works on the faulted line (i, 
j) for Trep

ij consecutive hours before the line is repaired. The correlation 
between νij,t and μij,t is given by a “big M” inequality constraint, where 
M1 is a sufficiently large number. If the faulted line is repaired at hour t, 
then µij,t = 1 and 

∑t− 1
τ=t− Trep

ij
νij,τ − Trep

ij = 0. Therefore, the only solution for 

this equation is νij,τ = 1 (τ = t –Trep
ij , t –Trep

ij + 1, … t – 1). Otherwise, 
∑t− 1

τ=t− Trep
ij

νij,τ − Trep
ij is unbounded. Constraint (9) means that during the 

restoration period, a maximum of Nrep repairing crews work on the 
faulted lines. 

In order to better illustrate the constraints (4)–(9), Fig. 4 shows a 
simple example of the evolution of binary variables νij,t, µij,t, and yij,t. 
Three faulted lines (Line #1, #2, and #3) needs to be repaired by two 
available repair crews (A and B). The Trep

ij value of three lines is forecast Fig. 3. Time step of two-stage DSRR.  
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to be 5 h, 4 h, and 5 h, respectively. A feasible solution for this sched-
uling problem is as follows:  

• At the beginning of the 1st hour, the restoration process starts. 
Sending the repair crew-A to the faulted line #2 and crew-B to 
faulted line #3.  

• At the beginning of the 5th hour, crew-A successfully repairs line #2. 
Then, sending crew-A to faulted line #1.  

• At the beginning of the 6th hour, crew-B successfully repairs line #3. 
Then, crew-B doesn’t need to work on other lines.  

• At the beginning of the 10th hour, all faulted lines are repaired and 
the whole restoration is completed. 

3.1.3. Network topology constraints 
Normally, a connected graph without cycles is defined as a radial 

graph [33]. A simple example is shown in Fig. 5. The single commodity 
flow (SCF) is an effective method to model the radial-topology con-
straints as a set of linear equations [7]. In this study, the SCF method is 
adopted. We introduce a lossless fictitious network that has the same 
topology and the same group of switching status variables zs

ij as the 
original electric network. In the fictitious network, each non-source bus 
is assumed to have the unity load demand 1.0, as shown in Fig. 5. The 
radial-topology constraints are given by (10)–(14). 
∑

ij
zij,t⩽N − 1, ∀(i, j) ∈ ΩB (10)  

∑

k∈δ(j)

Fjk,t −
∑

i∈π(j)
Fij,t = − 1, ∀j ∈ ΩN , j ∕= 1 (11)  

− M2zij,t⩽Fij,t⩽M2zij,t, ∀(i, j) ∈ ΩB (12)  

∑

k∈δ(j)

Fjk,t⩽N − 1, j = 1, ∀(j, k) ∈ ΩB (13)  

zij,t = 1, ∀(i, j) ∈ ΩB,NS\ΩB,Fa (14) 

Constraint (10) ensures that the number of closed lines does not 
exceed the number of non-source buses [5]. Constraint (11) represents 
the line flow balance of a bus. If a bus belongs to an island, it is de- 
energized and does not serve the load. Constraint (12) is the line flow 
constraint, where M2 is a sufficiently large number. Constraint (13) 
means that if the network is a connected graph, the line flow through the 
source bus does not exceed the number of non-source buses. Constraint 
(14) indicates that a line without an RCS will stay closed if not tripped. 
Fixing these binary variables by (14) will improve the computational 
efficiency. 

The maximal switching time of each RCS is restricted by (15)–(17): 
sij,t = 0 only if zij,t-1 = zij,t = 0 or zij,t-1 = zij,t = 1, otherwise sij,t = 1. Nsw can be 
specified by the decision maker considering the wear and tear of RCSs. 

sij,t⩾zij,t− 1 − zij,t, ∀(i, j) ∈ ΩB\ΩB,NS, t⩾2 (15)  

sij,t⩾zij,t − zij,t− 1, ∀(i, j) ∈ ΩB\ΩB,NS, t⩾2 (16)  

∑|ΩT |

t=2
sij,t⩽Nsw, (i, j) ∈ ΩB\ΩB,NS (17)  

3.1.4. System operating constraints 
The DSRR strategy should satisfy the device operating constraints 

and power flow constraints, given by (18)–(34). 

0⩽P̂
G
j,t⩽PGmax

j , ∀j ∈ ΩN,G (18)  

0⩽ΔP̂
L
j,t⩽P̂

L
j,t, ∀j ∈ ΩN (19)  

P̂
L
j,t = Kt⋅PL

j , ∀j ∈ ΩN (20)  

βj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − PF2

j

√

PFj
, ∀j ∈ ΩN (21)  

ΔQ̂
L
j,t = βjΔP̂

L
j,t, ∀j ∈ ΩN (22)  

EB
j,1 = EB

j,start, ∀j ∈ ΩN,E (23)  

− PBdch
i ⩽PBdch

j,t ⩽PBdch
i , ∀j ∈ ΩN,E (24)  

EB
j,t+1 = EB

j,t − PBdch
j,t Δt, ∀j ∈ ΩN,E (25)  

SoCminEB
j ⩽EB

j,t⩽SoCmaxE
B
j , ∀j ∈ ΩN,E (26)  

∑

k∈δ(j)

Pjk,t −
∑

i∈π(j)
Pij,t = P̂

G
j,t + P̂

PV
j,t + PBdch

j,t + 0 −
(

P̂
L
j,t − ΔP̂

L
j,t

)
,

∀j ∈ ΩN , j ∕= 1, ∀(i, j) ∈ ΩB, ∀(j, k) ∈ ΩB

(27)  

∑

k∈δ(j)

Qjk,t −
∑

i∈π(j)
Qij,t = 0 + 0 + 0 + QC

j,t −
(

Q̂
L
j,t − ΔQ̂

L
j,t

)
,

∀j ∈ ΩN , j ∕= 1, ∀(i, j) ∈ ΩB, ∀(j, k) ∈ ΩB

(28)  

QC
j,t = QCrt

j

(
Vj,t
)2

≈ QCrt
j

(
2Vj,t − 1

)
, ∀j ∈ ΩN,C (29) 

Fig. 4. Illustration of repair crew scheduling status.  

Fig. 5. Example of a radial network.  
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− M3
(
1 − zij,t

)
⩽Vi,t − Vj,t −

(
RijPij,t + XijQij,t

)
⩽M3

(
1 − zij,t

)
,

∀(i, j) ∈ ΩB
(30)  

− Smax
ij zij,t⩽Pij,t⩽Smax

ij zij,t, ∀(i, j) ∈ ΩB (31)  

− 0.5Smax
ij zij,t⩽Qij,t⩽0.5Smax

ij zij,t, ∀(i, j) ∈ ΩB (32)  

Vmin⩽Vj,t⩽Vmax, ∀j ∈ ΩN , j ∕= 1 (33)  

V1,t = Vsub (34) 

Constraint (18) represents the power output limit of fuel-based DG. 
Constraint (19) indicates that the amount of load shedding cannot 
exceed the existing load. Generally, thermostatic loads (e.g., air condi-
tioners) are of high priority to be turned off [32]. Constraint (20) 
computes the load profile of each bus, where Kt is the normalized load 
profile. Based on the assumption that the power factors of both the 
critical load (CL) and interruptible load (IL) are constant at all times, the 
ratio between the reactive and real powers of a load is expressed as (21). 
Hence, the reactive power variables can be replaced with active power 
variables, given by (22). Constraint (23) initializes the battery energy. 
All BESSs will be pre-charged to 100% state-of-charge (SOC) before the 
hurricane reaches the target distribution system. Since the latest 
Lithium-ion battery has high round-trip efficiency (92–96%) [34,35], 
this study assumes 100% efficiency of BESSs in order to simplify the 
optimization model. Therefore, constraint (24) expresses the net dis-
charging limit, in which the charging power has been converted to 
negative discharging power. Constraint (25) expresses the BESS energy 
change at each hour. Constraint (26) restricts the SOC limit of a BESS. 
The real and reactive power injections to bus j are given by (27)–(28). 
Note: the reactive power output of a fuel-based DG, PV system and BESS 
are denoted as zeros. Also, the real power output of a capacitor is 
denoted as zero. As a result, constraints (27)–(28) have similar forms. 
The reactive power of a shunt capacitor (SC) is linearized as (29) due to 
the tight range of the voltage. According to the linearized DistFlow 
method, constraint (30) restricts the line voltage drop. If zij,t = 1, the 
inequality constraint is reduced to an equality constraint, while if zij,t = 0, 
then Vi,t – Vj,t is unbounded. Constraints (31)–(32) ensure that the power 
flow through line (i, j) is zero if it is open. If the line (i, j) is closed, the 
reactive power limit is assumed to be half of the thermal limit of the line 
[10]. The voltage limits are given by (33). Bus 1 is the slack (substation) 
bus, given by (34). Above all, the co-optimization problem is formulated 
as a mixed-integer linear programming (MILP). 

3.2. Hourly Re-dispatch of DER 

At the t-th hour (t ≥ 2) of the DSRR process, the objective function is 
to minimize the operating cost. 

min.

(
∑

j∈ΩN,G

cGPG
j,t +

∑

j∈ΩN

cLΔPL
j,t

)

, ∀t ∈ ΩT (35) 

The network reconfiguration is executed by the DSO, as given by 
(36). The symbol (.)* indicates the solution obtained by the first-stage 
optimization. Since the network topology is determined, the inequality 
constraint (30) is reduced to an equality constraint (37). 

zij,t = z*
ij,t, ∀(i, j) ∈ ΩB (36)  

RijPij,t +XijQij,t = Vi,t − Vj,t, ∀(i, j) ∈ ΩB, zij,t = 1 (37) 

The practical load demand may deviate from the forecast value. The 
forecast errors of load and PV output are modeled as random multi-
pliersχL

j,t , χPV
j,t that follow normal distributions N(1, σ2

L) and N(1, σ2
PV), as 

enforced by (38) and (39), respectively. Thus, the real power reduction 
is limited by (41). The corresponding reactive power reduction is given 
by (42). Since the net discharging power of a BESS is time-dependent, 

the BESS power output is the same as the first stage (43). 

PL
j,t = χL

j,t⋅Mt⋅PL
j , ∀j ∈ ΩN , t ∈ ΩT (38)  

PPV
j,t = χPV

j,t ⋅P̂
PV
j , ∀j ∈ ΩN , t ∈ ΩT (39)  

0⩽PG
j,t⩽PGmax

j , ∀j ∈ ΩN,G (40)  

0⩽ΔPL
j,t⩽PL

j,t, ∀j ∈ ΩN (41)  

ΔQL
j,t = βjΔPL

j,t, ∀j ∈ ΩN , t ∈ ΩT (42)  

PBdch
j,t = PBdch*

j,t , ∀j ∈ ΩN , t ∈ ΩT (43) 

Then, the constraints (19), (27), and (28) are rewritten as (41), (44), 
and (45), respectively. 
∑

k∈δ(j)

Pjk,t −
∑

i∈π(j)
Pij,t = PG

j,t +PPV
j,t +PBdch

j,t + 0 −
(

PL
j,t − ΔPL

j,t

)
,∀j ∈ ΩN , j ∕= 1

(44)  

∑

k∈δ(j)

Qjk,t −
∑

i∈π(j)
Qij,t = 0+ 0 + 0+QC

j,t −
(

QL
j,t − ΔQL

j,t

)
, ∀j ∈ ΩN , j ∕= 1

(45) 

In the second stage, the decision variables are all continuous vari-
ables, and the optimization is in the form of linear programming. 

3.3. Summary of the two-stage DSRR 

Based on the analysis in Sections 3.1 and 3.2, the two-stage DSRR 
strategy is summarized in Fig. 6. After the disaster is over, the DSO lo-
cates the faulted lines and conducts the first stage DSRR, which is an 
|ΩT|-hour-ahead co-optimization of repair crews, reconfiguration, and 
DER dispatch. The first stage is a mix-integer linear programming 
(MILP), including |ΩT| × (3 ×|ΩB,

Fa| + 2×|ΩB|) binary variables and |ΩT| 
× (3×|ΩB| + 5×|ΩN|) continuous variables. Generally, the number of 
binary variables will be less than |ΩT| × (3 ×|ΩB,

Fa| + 2×|ΩB|) because 

Fig. 6. Flowchart of two-stage DSRR.  
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not all lines are equipped with RCSs. At each hour, the decisions of 
repair crew dispatch and dynamic network reconfiguration are 
executed. The second-stage re-dispatch is done based on the determin-
istic binary variables (obtained in the first stage) and the latest load 
demandPL

j,t . This stage only involves continuous variables. The re- 
dispatch continues until all faulted lines are repaired. The program-
ming of both stages can be directly solved by commercial solvers. 

4. Case study 

This section presents comprehensive case studies on the modified 
IEEE 33-bus and IEEE 123-bus test systems. The computational tasks are 
performed on a personal laptop computer with an Intel Core i7 Processor 
(3.00 GHz) and 16-GB RAM, and the code is implemented via the 
Matlab-based IBM ILOG CPLEX Optimization Studio V12.8.0. 

4.1. IEEE 33-bus system 

The modified IEEE 33-bus system is shown in Fig. 7. The system 
parameters are given in Table 1. Loads are classified into CLs and ILs. 
Examples of CLs are industrial, government and hospital loads, while ILs 
are generally residential loads. CLs and ILs can be turned off for different 
payments, reflecting the importance or reliability requirement of 
different types of users [36]. The load profiles are diverse. To simplify 
the study, this paper adpots one type of CL and IL profiles, respectively 
(shown in Fig. 8). The CLs at different buses adopt the same base CL 
profile. Similarly, the ILs at different buses adopt the same base resi-
dential load profile. In this study, the random multipliers χL

j,t ~ N(1, 
0.102) and χPV

j,t ~ N(1, 0.102) are applied to the base load profile to 
model the load/PV forecast error. 

The parameters of the two scenarios are shown in Table 2. The DSRR 
starts at the hour when the hurricane leaves the distribution system. In 
order to demonstrate the importance of optimal repair dispatch, we 
compare the results of two methods in each scenario:  

• Method 1 is the proposed two-stage DSRR with optimal repair 
sequence, reconfiguration and DER scheduling.  

• Method 2 is the reduced version of DSRR, in which the repair 
sequence is determined in an empirical manner. In other word, the 
variables νij,t, yij,t and µij,t are specified while the network reconfigu-
ration and DER scheduling are solved in the same way as Method 1. 

The first scenario considers three faulted lines and one repair crew. 
The time horizon for DSRR is determined as: |ΩT| = 5 + 4 + 4 + 1 = 14 
h. The repair scheduling of Method 1 (optimal repair sequence) and 

Method 2 (empirical repair sequence) is visualized in Fig. 9. During the 
DSRR period, the DSO may change the switching states of lines at each 
hour but ensures that the total number of switching changes is within the 
Nsw limit. The network reconfiguration at four representative hours is 
shown in Fig. 10. Before the faulted lines are repaired, islanded parts of 
the system are picked up by adjacent feeders through tie lines. The 
reason for repairing Line (23, 24) first can be intuitively explained: 1) 
Smax

23,24 is relatively large; 2) connecting Line (23, 24) can restore a large 
amount of CL at Bus # 28-33 during the subsequent hours by reconfi-
guration (see Fig. 10 (b)). The result also indicates that the optimal 
repair sequence is coupled with dynamic topology reconfiguration. 

Fig. 7. IEEE 33-bus system with DERs.  

Table 1 
Parameters of IEEE 33-bus system.  

Class Parameter Value 

System 
components 

Load 3.715 MW + j 2.300 Mvar 
Fuel-based 
generator 

Two devices, 0.40 MW capacity 

PV systems Four devices, 0.36 MW capacity 
Energy storage Three devices, 0.45 MW/1.4 MWh 

capacity, 100% initial SOC 
Shunt capacitors Four devices, 1.1 Mvar capacity 

Cost cG $0.25 k/MWh 
cj
L $1.2 k/MWh (CL) $0.5 k/MWh (IL) 

System voltage Vmin 0.95p.u. 
Vmax 1.05p.u. 
Vsub 0.99p.u.  

Fig. 8. Commercial and residential load profiles.  

Table 2 
Parameters of scenarios.  

Scenario Starting time of 
DSRR 

Faulted lines and predicted repair 
time 

Nrep Nsw 

1 10:00 Line (4, 5), (23, 24), (27, 28) 
Trep

4,5 = 5,Trep
23,24 = 4,Trep

27,28 = 4 
1 3 

2 11:00 Line (4, 5), (8, 9), (3, 23), (27, 28) 
Trep

4,5 = 5,Trep
8,9 = 3,Trep

3,23 =

4,Trep
27,28 = 5 

2 3  

Fig. 9. Repair sequence of Method 1 and 2.  
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The second-stage re-dispatch modifies the optimal DG output and 
load shedding. In Method 1, the repair progress of faulted lines and the 
total amount of served load are presented in Fig. 11. The “Normal” case 
means that there is no fault in the system. During the 10th − 13th hours, 
three upstream lines are faulted. The restored load is restricted by the 
line thermal limits (of Line (2, 19)) and DER capacity. During the 
14th18th hours, Line (23, 24) is repaired and reclosed. Therefore, a 
larger amount of load can be served by the substation. Although ILs are 
still unserved, almost all CLs are restored. During the 19th − 22nd hour, 
Line (4, 5) is also repaired. Thus, all loads can be served by network 

reconfiguration only. The total cost during DSRR is $6946. The 
computational time for the two-stage optimization is 6.9 s. 

In comparison, Method 2 (with empirical repair sequence) shows a 
lower restored CL and IL with the same resources and fault scenario. The 
total cost is $7810, which is 12.4% higher than that of Method 1. The 
main reason can be explained from Fig. 9 and Fig. 11: 1) it takes one 
more hour to repair Line (4, 5) than to repair Line (23, 24); 2) both lines 
serve a large amount of load. Then, Method 1 makes a larger amount of 
load be picked up when the first faulted line is repaired. 

In the second scenario, there are four faulted lines and two repair 
crews. The DSRR horizon is determined as: |ΩT| = 5 + 5 + 1 = 11 h. The 
repair sequence of Method 1 and 2 is visualized in Fig. 12. The network 
reconfiguration at four representative hours is shown in Fig. 13. The 
network topology keeps changing at each hour, but the switching state 
of each line changes no more than Nsw times. The repair progress of 
faulted lines and the total amount of restored load are presented in 
Fig. 14. At t = 15th hour, Line (3, 23) is repaired and reclosed. Therefore, 
a larger amount of CL can be served by the substation. When the second 

Fig. 10. Dynamic network reconfiguration with optimal repair sequence: (a) At the 10th hour; (b) At the 15th hour; (c) At the 19th hour; (d) At the 23rd hour.  

Fig. 11. Progress of line repair and load restoration.  Fig. 12. Repair sequence of Method 1 and 2.  
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faulted line is repaired at t = 16th hour, a larger portion of CLs and ILs 
are restored by network reconfiguration. The total operating cost of 
Method 1 is $6082. 

The computation time is 8.8 s. 
By contrast, the total cost of Method 2 is $7404 for the same re-

sources and fault scenario as Method 1. Similarly, the main reason for 
higher cost is that the crews are arranged to repair the time-consuming 
lines (Line (4, 5) and (27, 28)). Then, the 15th hour suffers a higher load 
shedding than Case 2. 

4.2. IEEE 123 bus system 

Fig. 15 shows the modified single-phase IEEE 123-bus system. The 
five normally-open tie lines are 29–48, 39–66, 54–94, and 115–116. 
Among the 121 lines, 22 normally-closed lines and 4 normally-open 
lines are installed with automatic switches. The parameters of system 
component, cost and system are listed in Table 3. The same set of CL and 

Fig. 13. Dynamic network reconfiguration with optimal repair sequence: (a) At the 10th hour; (b) At the 15th hour; (c) At the 17th hour; (d) At the 19th hour.  

Fig. 14. Progress of line repair and load restoration.  

Fig. 15. IEEE 123-bus system with DERs.  

Q. Shi et al.                                                                                                                                                                                                                                      



Applied Energy 318 (2022) 119245

10

IL profiles are adopted, as shown in Fig. 8. The parameters of a fault 
scenario are shown in Table 4. 

In this system, there are five faulted lines and two repair crews. The 
DSRR horizon is determined as: |ΩT| = 13 h. Fig. 16 illustrate the repair 
sequence of Method 1 and 2. The optimization finds that the upstream 
lines (13, 52) and (40, 42) should be repaired first. Crew 1 and Crew 2 
travel to Line (87, 89) and Line (67, 97) after finishing the repair of the 
first two lines, respectively. 

The second-stage re-dispatch obtains the hourly DG output and load 
shedding. Fig. 17 presents the restoration progress of faulted lines and 
total restored CL/IL. At the 15th and 16th hour, two upstream lines (13, 
52) and (40, 42) are repaired, respectively. Almost all loads are restored 
during the subsequent hours. The total operating cost is $7522. The 
computation time is 61.2 s. Furthermore, the total cost of Method 2 is 
$9180. The result verifies that the optimal repair sequence can minimize 
the load shedding cost during the DSRR period. Similarly, the high cost 
is also caused by the non-optimal repair sequence: the Crew B is sent to 
first repair the time-consuming line (67, 97). Also, Line (67, 97) provides 
less capacity than Line (40, 42). 

The studies of IEEE 33-bus and 123-bus systems indicate that the 
operational plannings of repair sequence and network reconfiguration 
are closely coupled. Intuitively, the lines which locates at the upstream 
feeder and take shorter repairing time should be selected to be repaired 
first (named as “upstream and shorter time” for simplicity). However, it 
is hard to empirically determine the repair sequence of such lines with 
“upstream and longer time” or “downstream and shorter time”. There-
fore, the proposed optimal DSRR determine the best repair sequence and 
the corresponding network reconfiguration. The comparison between 
Method 1 and 2 also serves as a sensitivity study to demonstrate the 
effect of optimal repair sequence on reducing the cost. The two-stage 
DSRR guarantees the optimal repair sequence that is coupled with dy-
namic network reconfiguration. As a compensation of the first-stage, the 
second-stage re-dispatch provides the optimal DG and load dispatch 
according to the latest load/PV profile. 

5. Conclusion 

The DSRR is a cooperative dispatch of multiple distribution system 
resources, including repair crews, normal-open tie lines and DERs. It 
conducts the repair and restoration simultaneously to minimize the 
unserved load. This paper develops a DSRR strategy to enhance the 

resilience of distribution systems against N-k contingencies with the 
consideration of load demand uncertainty. The main contributions of 
this paper are two-fold.  

• In the first stage, the co-optimization model solves for the optimal 
repair sequence and dynamic network reconfiguration simulta-
neously, together with the DER dispatch. The correlation between 
the repair crew allocation and the line switching states are modeled 
as a set of simple linear constraints. The maximal number of 
switching actions can be specified in order to prevent the wear and 
tear of RCSs. Once the faulted line is repaired, its switching state 
becomes a free binary variable at the subsequent hours. As a result, 
the repaired lines can be fully utilized to restore more loads. The 
method is more applicable to geographically-compact distribution 
systems.  

• Based on the optimal repair scheduling and network reconfiguration, 
a re-dispatch of DER scheduling based on the latest input parameters 
is proposed to overcome the prediction error of the load profile. Since 
the binary variables have been determined in the first stage, the re- 
dispatch is in the form of linear programming and requires low 
computational workload. 

In light of the rapid development of mobile power sources, future 

Table 3 
Parameters of IEEE 123-bus system.  

Class Parameter Value 

System 
components 

Load 7.060 MW + j 3.880 Mvar 
Fuel-based 
generator 

Three devices, 0.72 MW capacity 

PV systems Seven devices, 0.50 MW capacity 
Energy storage Three devices, 0.60 MW/2.4 MWh 

capacity, 100% initial SOC 
Shunt capacitors Three devices, 0.84 Mvar capacity 

Cost cG $0.25 k/MWh 
cj
L $1.2 k/MWh (CL) $0.5 k/MWh (IL) 

System voltage Vmin 0.95p.u. 
Vmax 1.05p.u. 
Vsub 0.99p.u.  

Table 4 
Parameters of scenarios.  

Scenario Starting time of 
DSRR 

Faulted lines and predicted repair 
time 

Nrep Nsw 

1 11:00 Line (13, 52), (40, 42), (67, 97), (80, 
81), (87, 89) 
Trep

13,52 = 5,Trep
40,42 = 4,Trep

67,97 =

6,Trep
80,81 = 3,Trep

87,89 = 3 

2 4  

Fig. 16. Repair scheduling of Method 1 and 2.  

Fig. 17. Progress of line repair and load restoration.  
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work will focus on the cooperative dispatch of repair crews and mobile 
energy storage systems for DSRR, as opposed to DERs at fixed locations. 
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