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Abstract—Multi-microgrid formation (MMGF) is a promising
solution for enhancing power system resilience. This paper pro-
poses a new deep reinforcement learning (RL) based model-free
on-line dynamic MMGF scheme. The dynamic MMGF problem
is formulated as a Markov decision process, and a complete
deep RL framework is specially designed for the topology-
transformable micro-grids. In order to reduce the large action
space caused by flexible switch operations, a topology transfor-
mation method is proposed and an action-decoupling Q-value
is applied. Then, a convolutional neural network (CNN) based
multi-buffer double deep Q-network (CM-DDQN) is developed to
further improve the learning ability of the original DQN method.
The proposed deep RL method provides real-time computing to
support the on-line dynamic MMGF scheme, and the scheme
handles a long-term resilience enhancement problem using an
adaptive on-line MMGF to defend changeable conditions. The
effectiveness of the proposed method is validated using a 7-bus
system and the IEEE 123-bus system. The results show strong
learning ability, timely response for varying system conditions
and convincing resilience enhancement.

Index Terms—Convolutional neural network (CNN), Deep
reinforcement learning (DRL), extreme weather, distributed
generation (DG), microgrids (MGs), multi-microgrid forma-
tion (MMGF), power system resilience.

I. INTRODUCTION

H IGH-IMPACT and low-probability events, such as
extreme weather events, are occurring with increasing

intensity. The extensive damage and subsequent outages of a
power system caused by extreme events indicates the necessity
of enhancing power system resilience [1]. Microgrids (MGs),
which improve the flexibility of power system operation with
both grid-connecting and islanding modes, are promising solu-
tions for power grids to withstand unplanned catastrophic
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events [2]. With the wide penetration of distributed energy
resources (DERs), advanced metering, communication, and
automatic control infrastructures, the distribution system (DS)
can be easily transformed into self-supported MGs [3]. These
self-supported MGs largely benefit power system resilience
by improving the restoration capability of the distribution
networks [4]-[6] as well as the survival of critical loads [7].

Since the ability of MGs to handle extreme condi-
tions has been proven both by academic index [8] and
by practical cases (e.g., islanded MGs successfully sur-
vived Hurricane Sandy [9]), resilience-oriented MG formation,
resources allocation, and system operation have been widely
discussed. Optimal MG formation strategies were proposed
in [4] and [10] to divide original DSs into resilient MGs after
major faults of the main grid. Allocable distributed genera-
tions (DGs) [11] and remotely controlled switches (RCSs) [12]
have been highlighted to provide a good planning study of
resilient MGs. A transformative architecture for the normal
operation and self-healing of multi-MGs was proposed in [13]
to improve system self-healing capability, and [14] used a
scheduling-horizon-based optimization scheme to reduce load
shedding with reasonable operation cost. In addition, helpful
resilient control strategies to benefit the operation of islanded
MGs were studied in [15].

To fully utilize DERs to enhance power grid resilience,
forming multiple MGs using DGs has become a promis-
ing solution for handling extreme conditions [3]. The
essence of the multi-MGs formation (MMGF) problem is
to identify the desired topology subject to various con-
straints. For the topology determination problem, math-
ematical programming [3], [4], [10] and heuristic search
approaches [16], [17] are widely used methods. A mixed-
integer non-linear programming (MINLP) model was built
in [3] to sectionalize the outage area into networked MGs.
The MMGF problem was formulated as a mixed-integer lin-
ear programming (MILP) model in [4], and the model was
further improved in [10] by reducing both binary and contin-
uous variables. Based on the graph theory, [16] developed a
graph-theoretic search algorithm to identify a post-outage DS
topology. Another heuristic approach was proposed in [17] to
approximately solve the MG formation problem of large-scale
systems with tractable computation. A good summary of exist-
ing methods, especially for the radial topology consideration
when MGs are being formed, was provided in [18].
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The aforementioned MG formation strategies are mainly
based on observable system conditions and environments with
short-term considerations, while conditions under natural dis-
asters might be uncertain and changeable [7]. The uncertain
output of RES-DGs and unexpected damage to grids reduces
the efficiency or even damages the initially formed MGs.
Therefore, an adaptive and dynamic MG formation strategy
is needed to further enhance the resiliency under unexpected
system conditions. By continuously interacting with the envi-
ronment and obtaining feedbacks, the deep reinforcement
learning (DRL) method [19] promises to help the MMGF
scheme obtain adaptability to changeable conditions.

As an efficient solution to handle Markov decision
processes (MDPs), DRL methods have become an attrac-
tive method for intractable problems in power systems.
Reference [20] cast the volt-VAR optimization to a deep
Q-network (DQN) framework and finally realized adaptive
voltage control under time-varying operating conditions. To
achieve real-time service restoration, [21] proposed an imi-
tation learning (IL) framework to improve the training effi-
ciency of DRL methods. In terms of MGs, the DRL method
showed satisfying performance in energy management prob-
lems [22]-[24]. However, because of the difficulty of ensuring
feasible radial topology, few studies have discussed the MMGF
problem using DRL methods. For the MMGF problem, the
action space of DRL methods has exponential growth with
the increase of the number of switches, which deteriorates
the learning ability of DRL methods. Therefore, the DRL
based dynamic MMGF is a valuable but challenging problem
to study.

For the purpose of realizing an on-line dynamic MMGF, a
new deep RL-based model-free real-time adaptive scheme is
proposed in this paper to enhance grid resilience over a long
time-horizon. First, the dynamic MMGF problem is formu-
lated as an MDP, and the deep Q-learning based RL method
is introduced as a promising solution. Second, holding the fea-
tures of a spanning forest, a topology transformation method
and an action-decoupling method based on convolutional neu-
ral networks (CNN) are developed to reduce the action space
and mitigate tricky topology issues. Finally, several techniques,
such as double DQN (DDQN), Epsilon-greedy based explo-
ration, and specially designed multi-buffers, are implemented
to improve the learning ability of the proposed DRL method.

The contributions of this paper can be summarized as fol-
lows: 1) A new DRL supported on-line dynamic MMGF
scheme is proposed. A long time-horizon is considered to
fully utilize the available DGs under major faults of the main
grids. The original problem is reformulated using an MDP
and a complete DRL framework is specially designed for the
topology-transformable MGs. 2) The problem of large action
space when applying DRL methods is mitigated. The topology
transformation method and the CNN-based action-decoupling
Q-network are developed to efficiently handle the issue of
exponentially increasing action numbers. 3) The learning abil-
ity of the DDQN method is further improved to become the
CNN-based multi-buffer double DQN (CM-DDQN) method.
The CM-DDQN method has strong learning ability and sat-
isfactory computational performance to provide a real-time

Fig. 1. MDP for the MMGF problem.

adaptive MMGF strategy according to the newly updated
system information.

The rest of the paper is organized as follows: Section II
reformulates the dynamic MMGF problem as a DRL
based MDP. The topology transformation and the CNN
based action-decoupling Q-network methods are provided in
Section III. Section IV shows the detailed designs for the train-
ing and on-line application of the CM-DDQN based dynamic
MMGF scheme. Section V provides case study results and
discussions, followed by the conclusions of this work.

II. MMGF PROBLEM FORMATION

USING DRL FRAMEWORK

This section introduces the dynamic MMGF problem with
a DRL based MDP form. First, the dynamic MMGF problem
is formulated to fit into an MDP from. Then, the solu-
tion is designed using the deep Q-learning structure with
characteristics of the MMGF problem.

A. Formulate Dynamic MMGF as an MDP

The goal of the MMGF is transforming a DS into several
self-supported islanded MGs [4]. Under a changeable envi-
ronment, such as during extreme weather events, the dynamic
MMGF maintains load supply during a time period by adap-
tively adjusting the topologies of multi-MGs. It is a sequential
decision-making problem in a multi-step process. At each
step, a topology configuration is determined to form islanded
MGs through system reconfiguration and splitting based on
the current state and the MMGF action of the last step.

Therefore, the dynamic MMGF problem can be described
by an MDP which consists of four essential elements: state S,
action A, state transition probability P, and reward r. In the
MDP of the MMGF problem, the agent can be the distribu-
tion system operator (DSO). As shown in Fig. 1, the agent
takes an action At based on the environment’s state St at each
time step t. Consequently, the agent gains a reward r(St, At)
and the state transitions to St + 1 according to the state tran-
sition probability P(St+1|St, At). This state–action–next-state
process is an interaction between the environment and agent,
and it continues until the terminal state or the last step of
setup [19].

Assume that the original DS totally has n nodes, l lines, w
RCSs (w ≤ l), ng DG nodes and nL load nodes and the time
horizon is T. The binary variable α denotes the close (α = 1)
or open (α = 0) statues of RCSs. Each MG that is derived
from the original DS should be energized by a DG [4], [10].

1) State: The state is a part or all of characteristics of
the current environment observed by the agent. The state
is composed of the current network topology configuration
α = [α1, . . . , αw], active and reactive DG output condition
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pDG = [pDG,1, . . . , pDG,ng] and qDG = [qDG,1, . . . , qDG,ng],
load amount pL = [pL,1, . . . , pL,ng] and qL = [qL,1, . . . , qL,ng]
and the time t. Accordingly, the state at time t is defined as
St = [αt, pDG,t, pDG,t, pL,t, qL,t].

2) Action: The action is the reaction of the agent to the
current state. In the dynamic MMGF problem, the action at
time t At can be represented by changing the configuration
of networks in St. Therefore, the action space contains all
the combinations of topology configuration αt. However, the
action space is quite large with 2∧w combinations. Since the
large action space creates problems of non-convergence in
DRL methods, this will be further handled in Section III.

3) Reward: The reward is the feedback of the environ-
ment after the agent takes some action in a state. For the
dynamic MMGF process, the action should first maintain the
radial network of each individual MG. Further, the security
constraints such as voltage and branch flow limits should
be considered. The reward function (1) defines the MMGF
problem.

rt(St, At) =
[

ftopo(αt)− fAC
(
pt, qt, αt

)
−fswi(α0, . . . , αt)− fpb

(
pt, αt

)
]

(1)

The reward function contains the first term as the reward
and the last two terms as penalties of the current action.
Specifically, the first term ftopo (.) represents the reward if
switch action αt+1 successfully forms multi-MGs with radial
networks. The second term function f AC (.) represents the
penalty based on AC power flow results. The third function
fswi (.) punishes frequent close/open actions of each switch.
The last function fpb (.) represents the penalty for insufficient
power supply.

Note that the reward provides immediate feedback for step
one. However, the dynamic MMGF problem is concerned with
long-term feedback with cumulative rewards. Thus, the return
(2) in which the accumulation of the current reward and the
discounted future rewards is defined.

Rt =
T−1∑
k=0

γ krt+k γ k ∈ [0, 1] (2)

where γ k is the discount factor.

B. Dynamic MMGF Using Deep Q-Learning

Different from classic dynamic programming methods, the
DRL method does not require either explicit policies and
value functions for MDPs or complete knowledge of MDPs.
Reference [19]. Therefore, DRL is a promising approach to
solving the complex dynamic MMGF problem. The well-
trained DRL method can quickly provide an on-line scheme
for dynamic MMGF, which helps the original grid give an
adaptive reaction under changeable environments. This further
enhances system resilience.

As introduced in Section II-A, the dynamic MMGF problem
has both is with discrete action space as well as continu-
ous state space. This feature makes it suitable to apply the
DQN method [25]. The DQN method is a combination of a
deep neutral network (DNN) and Q-learning which updates

the action-value function iteratively. For a policy π , define
the action-value (Q-value) function as (3),

Qπ (St, At) = E[Rt|St, At, π ] (3)

where Q-value is the expected discounted reward for execut-
ing action At at state St and following policy π . The objective
of Q-learning is to estimate the value for an optimal policy. It
has been proven that an optimal policy can be derived from
the optimal Q-values Q∗(St, At) = max Qπ (St, At) by select-
ing the action with the highest Q-value in each state [26].
Therefore, the agent can decide how to properly perform
actions by learning the Q values. For the dynamic MMGF
problem, the Q-value can guide proper MMGF decisions in
the MDP introduced in Section II-A.

Based on the Bellman equation, (3) can be further rep-
resented as a recursive format (4). As a form of temporal
difference (TD) learning, Eq. (5) can update the Q-value
towards the targeted Q-value with the learning rate η.

Qπ (St, At) = E
[
rt + γ Qπ

(
St+1, At+1

)]
(4)

Q(St, At)← Q(St, At)

+ η

[
rt + γ max

At+1
Q

(
St+1, At+1

)− Q(St, At)

]

(5)

Theoretically, the convergence of the iterative process is
guaranteed, which means that Q∗ (St, At) can be found [26].
The agent can be guided to optimally perform actions using
Q∗ (St, At). However, it is difficult to function the Q-value
in the dynamic MMGF problem, and it is hard to pro-
vide a reasonable Q-table because of continuous state space.
Therefore, the Q-value function is approximated via a deep
neural network (DNN) parameterized by θ (6). As such,
the original Q-learning method is transformed into the DQN
method [25].

Q(St, At) ≈ Q(St, At|θ ) (6)

The DNN based Q-value is updated with a loss function
representing the mean-squared TD error, as shown in (7). For
the MDP, the first two terms in (7) represent the direct reward
of the current action and the potential value of the current
action for a future MDP, respectively. Together, they measure
the value of the current action. The last term directly gener-
ates the value of the current action using the Q-network. By
minimizing the loss function, the Q-network gradually learns
to generate Q-values guiding proper MMGF schemes.

L(θ) =
[

rt + γ max
At+1

Q
(
St+1, At+1|θ

)− Q(St, At|θ )

]2

(7)

III. ACTION GENERATION OF DYNAMIC MMGF PROCESS

In this section, the problem of large action space when
applying DRL methods is mitigated. First, a topology trans-
formation method is used to handle the radial topology
requirement. Then, the CNN-based action-decoupling Q-value
is designed to further handle the large action number.
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Fig. 2. The process of multi-MGs formation.

Fig. 3. Topology transformation for MMGF.

A. Search Space Reduction of Spanning Forest

Since the action space contains all the combinations of
topology configuration αt, the original scale of the action
space is 2∧w. This exponentially increasing action space
creates problems for the convergence of (5), and it con-
tains tremendous infeasible network configurations because the
radial network of each MG needs to be maintained [4], [18].
Moreover, the infeasible topology and the computation burden
make power flow calculation-based environment interaction
difficult to perform. Therefore, topological issues need be
addressed.

From the point of changing topology, splitting a tree leads
to several trees. Therefore, the MMGF problem includes the
reconfiguration and splitting of the original DS. As shown
in Fig. 2, all the reasonable radial MGs can be found by:
1) reconfiguring the original radial DS via switching opera-
tions, and 2) splitting the reconfigured DS by opening any
closed switches.

The essence of the reconfiguration and splitting process is
to find all the spanning forests of a network topology. Since
it is intractable to directly trace all the spanning forests, a
topology transformation method, as shown in Fig. 3, is applied
to simplify the problem.

First, the DG nodes are picked up and connected using a vir-
tual node (the blue node in Fig. 3). Accordingly, the spanning
forest problem can be simplified as the spanning tree problem.
In this way, finding MMGFs is equivalently transformed into
the problem of finding radial networks of the new topology.
The radial topology of the new topology can be ensured by

two conditions [18]: 1) n−ng RCSs switch on (the virtual node
is not included in n) and 2) all the nodes must be connected.

The first condition reduces the action space from the expo-
nential form (2∧w) to the polynomial form Cw

n−ng
. This is

how it works: the original DS has n nodes, ng DG nodes
and w RCSs in total. So, the number of original possible
combinations is 2w. After applying the proposed topology
transformation method, the new topology has n + 1 nodes
(including the virtual node) and w+ng lines (including the vir-
tual lines between the virtual node and DG nodes). To ensure
radial topology, the new network should have n lines in oper-
ation. Because ng virtual lines have already been in operation,
n − ng RCSs should be switched on. Therefore, the problem
is transformed into picking up n−ng RCSs in w RCSs, which
has Cw

n−ng
possible combinations. This is significantly less than

the original 2∧w combinations.
Based on the first condition, the second condition can be

used to check the feasibility of the network.

B. CNN-Based Action-Decoupling Q-Value

The key purpose of the DQN method is to learn Q values
by building and training the neural network. Regarding power
related applications, the DQN method is normally based on
the structures of an artificial neural network (ANN) [27] or
DNN [18], [28]. However, as defined in (3), the Q-value is
the expected accumulation of the discounted reward functions.
The reward function for the MMGF problem heavily depends
on the AC power flow calculation which has a sparse func-
tion relationship [29], [30], while the neighboring branches
have a stronger topology relationship. Therefore, the neu-
ral network is organized using a CNN which has a strong
automatic feature learning ability for processing data with
a grid-like topology with sparsely connected features. The
CNN promises to better learn the Q values of the MMGF
problem.

The data preprocessing for the deep CNN of the Q-value is
based on the new topology in Fig. 3. The input data contains
node active and reactive power injection vectors P0 and Q0,
branch resistance and reactance elements R0 and X0 elements,
switch open/close statues W and frequencies of switching
operation F. In order to ensure the consistent dimension, P0

and Q0 are extended with l-n zeros (if l > n) to become P
and Q, and R and X are formed by considering the original
branch parameters R0 and X0, as well as the switch status W.
The input is organized as [P; Q; R; X; F].

Fig. 4 shows the process of generating a Q-value using the
CNN structure. Assuming the first convolutional layer has fil-
ters of the size [3, 3, 1, 12] where the first three numbers are
the height, width and depth of one filter and the last number
is the number of filters. Zero-padding is applied to maintain
the original size of the input data. The filter of Conv2 has the
size [3, 3, 12, 24]. Hence, the output of Conv2 has the size
[5, w, 24] and it is further flattened as a vector with the size
[1, 5× w× 24] and goes through a FC1 layer. Using a matrix
of the weight parameters with the size [5 × w × 24, w] and
a [1, w] parameter, the output will become a vector with the
size [1, w].
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Fig. 4. Structure of CNN for Q-value.

Fig. 5. Design of action-decoupling Q-value.

Although the action number has been reduced by the topol-
ogy transformation method, the amount of CNN output data
can still be large if each action is considered as an output.
Therefore, instead of taking each output data as an action, an
action-decoupling method is designed, as shown in Fig. 5,
by setting the CNN output V as the values of switches.
Accordingly, the Q-value does not take a specific value of
the DQN output; instead, it is set to the average value of a
selected subset in the CNN output data V. That is, top n-ng val-
ues in V are selected and extracted as V′ and the Q-value (8) is
the average of values in V′. In general, the action-decoupling
method takes the outputs V of CNN as values for each switch,
selects the closing switches, and then calculates the Q-value.
When transforming V to V′, we may record the switch index
numbers of the top n-ng values, set 1 (closed) to these switches
and 0 (open) to the remaining switches. Then, the new switch
statues in W′ are obtained by closing the selected switches
and opening the remaining ones.

Q
(
St+1, At+1|θ

) = sum
(
V′

)/
n− ng

(8)

A min_max_scaler transformation is applied to normalize
the input data P; Q; R; X and output data V. The frequencies
of switching operations in F are normalized by dividing the
total step number. Switch open/close statues in W are orig-
inally binary. Through normalization, the values of the data
are within the range [0, 1] which helps create a more regular
search region for faster convergence of the algorithm. The loss
function used to train the CNN is given by (7). The reward
function for the MMGF problem is formulated considering the
topology requirements, power balance, voltage, branch flow
and switch operation times which will be further functioned
in Section IV-B.

IV. LEARNING AND APPLICATION OF CM-DDQN

The learning and application of the proposed CM-DDQN
method are discussed in this section. First, techniques for
better learning are incorporated in the DRL method. Then,
detailed designs of the reward function and the RL process for

a dynamic MMGF are presented. Finally, the entire method as
well as the on-line application framework is shared.

A. Techniques for Better Learning

The key to realizing the DRL based dynamic MMGF is to
let the Q-network learn the proper reactions in the MDP. Many
techniques have been studied for the efficient DQN learning.
The experience replay, Epsilon-greedy based exploration, and
fixed network are the three most efficient techniques.

1) Experience Replay and Multiple Buffers: The DQN
learns the Q-value based on previous experiences. However,
for the MDP, the previous experiences are overwritten
with new experiences. This largely reduces data efficiency.
Therefore, the experience replay method [25] is applied
to memorize the experiences and re-train the Q-network.
Accordingly, each experience can be used repeatedly, and bias
due to correlation between training samples can be eliminated.

The experience replay consists of a memory part and a
replay part. The memory contains a list of previous experi-
ences and observations to re-train the Q-network. In the MDP,
state St, action At, reward rt„ next state St+1 and topology
surviving condition D are appended to the memory1. As long
as the memory stores enough experiences, the replay part is
activated.

memory1 = [
. . . ,

(
St, At, rt, St+1, Dt

)
, . . .

]
(9)

Since the learning of the Q-network largely depends on the
experience, reserving a part of the good experience helps the
Q-network learn proper reactions. For the MMGF problem,
good experiences have high reward values and feasible topol-
ogy. Accordingly, multi-buffers are constructed with extra
memories to reserve good experience extracted from the
original memory. The replay part randomly extracts some
experiences from buffers to organize a minibatch to train the
Q-network.

memory2 = [
. . . ,

(
St, At, r∗t , St+1, Dt

)
, . . .

]
(10)

memory3 = [
. . . ,

(
St, At, r, St+1, D∗t

)
, . . .

]
(11)

The training of the Q-network is enhanced using the
minibatch in the MDP.

minibatch =
⎡
⎣ random.sample(memory1, batch_size1),

random.sample(memory2, batch_size2),

random.sample(memory3, batch_size3)

⎤
⎦
(12)

2) Epsilon-Greedy Based Exploration: Since the CNN
based Q-network is initialized with random weights and biases,
it’s difficult for its performance to be satisfying in the early
stages. Therefore, instead of selecting actions that directly use
the not well-trained Q network, it is better to try all possi-
bilities before the pattern starts to. The random selection of
actions is called ‘exploration’, while the prediction using DQN
is ‘exploitation’. The Epsilon represents the exploration rate
which is a certain percentage at which the agent randomly
selects its actions. The Epsilon-greedy method uses an anneal-
ing ε value to guide ‘exploration’ and ‘exploitation’. As shown
in (13), with the constant k controlling the annealing speed, the
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ε value gradually decreases after the DQN training begins. In
each MDP step, the agent randomly extracts a value of [0, 1].
Then, the agent selects the action with the largest Q value if
the random value is less than ε; otherwise, a random action
will be selected.

ε =
{

kε, ε > εmin
εmin, ε ≤ εmin

(13)

3) Fixed Q Network (Double DQN): Because the update
process (5) picks up the maximum Q value of the next
state, the overestimation becomes a long-standing problem
for all Q-learning based algorithms. In order to address this
issue, a DDQN is proposed [30] with better results on ATARI
2600 games than other Q-learning based methods. Therefore,
it is applied in the deep Q learning based MMGF scheme.

The DDQN has two separate neutral networks: the original
Q network and the target Q (T-Q) network, which decou-
ples the action selection and action evaluation. The original
Q network is used to select the action with maximum Q value
while the T-Q network evaluates the Q value of the selected
action. The T-Q network is a fixed network which is not
updated in the Q network updating process. The fixed features
enhance the efficiency and stability in the learning process.
The loss function (7) is adjusted into (14) accordingly.

Lt(θ) =

⎧⎪⎨
⎪⎩

[rt − Q(St, At|θ )]2 (t = T)[
rt + γ max

At+1

T − Q
(
St+1, At+1

∣∣θTar
)

−Q(St, At|θ )

]2

(t 
= T)

(14)

Based on the original deep Q learning structure, the extra
designs 1-3) give the DQN good performance in dealing with
the overestimation issue and provide better learning processes.
At this point, all the designs for the CM-DDQN method are
presented.

B. CM-DDQN Learning Process

Defining a suitable reward function is an indispensable part
to completing the learning process of DRL methods. The
detailed reward function (1) is shown in (15) to help determine
the Q network of the dynamic MMGF problem.

rt(St, At) =

⎧⎪⎨
⎪⎩

[
ftopo(αt)−∑

i∈Mg
fAC,i

(
Pt, Qt, αt

)
−fswi(α0, . . . , αt)− fpb,i(Pt, αt)

]
Stopo = 1

ftopo(αt) Stopo = 0

(15)

where Stopo is the signal to show whether the switch action αt

successfully forms multi-MGs with radial networks, and Mg is
the set of newly formed MGs. As shown in (16), if Stopo = 1,
ftopo(.) provides the reward w; otherwise, ftopo (.) gives punish-
ment –w and the ‘game over’ signal of an MDP is triggered
because of the infeasible topology. Functions related to AC
power flow f AC,i(.), switch status fswi(.) and power balance
fpb(.) are further explained in (17), (18) and (19), respectively.

ftopo(αt) =
{

w Stopo = 1
−w Stopo = 0

(16)

fAC,i
(
Pt, Qt, αt

) =∑
j∈i

pvol,j + ploss,i +
∑
l∈i

pbran,l (17)

fswi(α0, . . . , αt) =
∑
j∈w

pj (18)

fpb,i(Pt, αt) =
{

0, M ≤ 0
M, M > 0

(19)

M =
∑
j∈i

pL,j + ploss,i −
∑
j∈i

pDG,j (20)

The AC power flow related function f AC,i(.) provides the pun-
ishment value of forming MG i. It contains penalties of voltage
violation pvol,j (21), system power loss of ploss,i, and branch
overflow pbran,l (22). The fswi(.) function punishes frequent
close/open actions of each switch using (23) which works if
switch j exceeds the allowed number of operations in the whole
dynamic MMGF process. As shown in (19) and (20), fpb(.)
gives punishes to MG i if it has power deficiency.

pvol,j =
{

0, 0.95 ≤ Vj ≤ 1.05
pvol , otherwise

(21)

pbran,l =
{ (

Ll − Lupp,l
)/

Bbase, Ll > Lupp,l

0, Ll ≤ Lupp,l
(22)

pj =
{
0,

∑t
s=1

∣∣αj,s − αj,s−1
∣∣ ≤ Supp,j∑t

s=1

∣∣αj,s − αj,s−1
∣∣/Nstep, otherwise

(23)

where Vj is the voltage amplitude of node j, Ll and Lupp,l

are respectively the absolute value and upper bound of branch
power of line l, Bbase is the base value to standardize the
branch flow penalty, Supp,j is the allowed operation number of
switch j, and Nstep is the required step of the dynamic MMGF
process.

The CM-DDQN learning process for the MMGF problem is
provided in the above algorithm description. Therein, there are
hard constraints and soft constraints. A “game over” is trig-
gered if any hard constraint is violated, while soft constraint
violations lead to certain consequences instead of an imme-
diate “game over”. In the dynamic MMGF problem, the hard
constraint is the feasible topology requirement. If the switch
actions cannot ensure a radial network for each MG, there will
be a ‘game over’ and the MDP is directly ended. The voltage
limit, branch flow limit, switching number limit and power
balance limit belong to soft constraints which form penalties
to organize the reward value of the switch on/off decisions in
the current step.

C. Deep RL Based Dynamic Model-Free MMGF Scheme

The whole DRL based on-line dynamic MMGF process is
shown in Fig. 6. Since the feasible topology is hard to learn
quickly, a pre-training part is prepared to make the Q-network
capture some topology and power flow related features of
the original system. This helps the DRL scheme to be used
directly under emergencies or major fault conditions of the
main grid. In a major fault event process, the pre-trained Q-
network will quickly provide the MMGF scheme to make full
use of the current available DERs. Meanwhile, new experi-
ence will be recorded in the buffer and the Q-network can
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Algorithm 1 CM-DDQN Learning Process

Input: DG generation data set {p1
DG, . . . , pT

DG} and
{q1

DG, . . . , qT
DG}, load data set {p1

L, . . . , pT
L} and {q1

L, . . . , qT
L}.

Initial topology of the original DS α0 = [α0
1, . . . , α0

w]. Apply
topology transformation in Fig. 3.
Output: well-trained action-value Q network
S1: Initialization. Initialize Q network and T-Q network with

same random weights and bias. Initial replay memory1-
3 with capacity maxlen. Set Dstep = 0. Set batch
size, Episode M, step number T and Epsilon-greedy
parameters.

S2: for Episode from 0 to M do
Initialize state S0 = [P0; Q0; R0; X0; F0]
for Step from 1 to T do

Perform Epsilon-greedy, and randomly select an
action αstep or αstep = argmax [Q(St, At)].
Calculate reward value (15). If topology infeasible,
set Dstep = 1.
Organize new state Sstep+1. Note that R, X and F
are updated according to αstep+1 while P and Q
follow DG generation and load data sets.
Add record [Sstep, αstep+1, rstep+1, Sstep+1, Dstep,]
in memory. Add record to memory2 if rstep+1 ≥
rstd. Add record to memory3 if Dstep = 0.
If topology is infeasible/Dstep == 1 do

Update T-Q-CNN as Q-CNN
Break;

End if
If conditions for replay are satisfied do

Randomly select batch size records from
memory. Train Q network (Q-CNN) using loss
function (14).
If Step = T do

Update T-Q-CNN as Q-CNN
End if

End if
End for

End for
S3: Obtain the Q-CNN.

be further updated when the training condition is trigged.
Specifically, in the on-line application process, a ‘do-nothing’
module [32] can be added to ensure the topology feasibility.
The actions produced by the Q-network will be re-checked
using the topology check module in the environment. The ‘do-
nothing’ module is triggered if the re-organized network is
infeasible, and the produced action will not be implemented
to maintain the feasible radial network of the last step.

As such, the DRL based dynamic MMGF scheme can
satisfy the real-time computation requirement of the on-line
application because the RL agents obtain switch on/off deci-
sions very quickly through simple numerical calculations.
Without the actual power system modeling or power flow
equations, the on-line application can be performed in a
model-free way. On the other hand, the agent can keep
on learning new experiences according to newly updated

Fig. 6. CM-DDQN based dynamic MMGF process.

Fig. 7. The 7-bus system.

system conditions and resilient reactions, which improves the
system’s adaptability to handle changeable event conditions.
The essence of the proposed dynamic MMGF scheme is to
enhance system resilience by flexibly changing topology to
form different self-supported MGs according to the newly
updated system conditions.

V. CASE STUDY

In this section, the training and application performance of
the proposed CM-DDQN based dynamic MMGF scheme is
demonstrated. The dynamic MMGF scheme is compared with
the conventional initially-formed MGs schemes [4], [10]. The
proposed CM-DDQN is compared with the DDQN [28].

Two systems are used: the 7-bus system with 2 DGs and
the IEEE 123-bus system with 12 integrated DGs. The time
horizon is set as 200 minutes, and each MG formation trans-
formation step is set as 10 minutes. The switch limit for each
RCS is set as 4. The initial value of ε is 1 and εmin = 0.1.
Filters of the CNN are with the size [5, 5, 1, 12] and [5, 5,
1, 24]. The uncertain data of DG outputs follow a 3 sigmas
normal distribution with 20% forecast error from the expected
values. The DRL codes and the corresponding environment
are written and compiled in Python 3.7 while the CNN is built
using TensorFlow 2.2. and Keras 2.4. Pypower 5.1 is applied
to solve the power flow calculation in the environment. All
simulation studies were conducted on a computer with Intel
Core i7-8550U CPU and 16 GB RAM.

A. DRL Based Dynamic MMGF Process Using 7-Bus System

1) Pre-Training of Deep RL: For the 7-bus system, the
episode number for training is 500, and the DG output values
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Fig. 8. Successful MMGF steps in the training process.

Fig. 9. Convergence progression of the return of 7-bus system.

for each step of the 500 episodes are randomly generated. The
numbers of input and output data are 5×8 and 8. Since the fea-
sible topology is regarded as the hard constraint, the topology
condition is the primary concern throughout the entire pro-
cess. Note that the switch on/off decisions are obtained from
the Q-network output value of each switch. Using the method
introduced in Section III-B, the switches with the top 5 high-
est values according to the CNN output data V, are regarded
as switched on, and the rest are switched off.

The deep deterministic policy gradient (DDPG) method
is applied in this case to compare with the proposed CM-
DDQN. The actor-network of DDPG has 8 outputs represent-
ing 8 switches, and the output of the actor-network is limited
to 0∼1. If the output value is larger than 0.5, then, switch on;
otherwise, switch off.

The number of steps with radial networks of each MG is
shown in Fig. 8. A 20-step feasible topology condition means
a successful dynamic MMGF process, while any infeasible
topologies in the process directly lead to a ‘game over’ which
means the end of an episode. As can be observed, after almost
350 episodes, the proposed DRL method successfully learned
how to form feasible topologies by providing switch on/off
decisions in the dynamic multi-step process.

After the switch statues are determined, the reward function
(16) can be calculated according to the topology check and AC
power flow calculation in the environment. The convergence
process of the return, which is obtained using the Q value
and the reward, is shown in Fig. 9. The values of the return
are organized according to ten separate trainings. The maxi-
mum and minimum return values are extracted from the ten
separate trainings and become the upper and lower bounds,
which form the light blue area in Fig. 9. As shown in the
figure, from 0 to 330, the return first goes through an explo-
ration process with low values; then, it increased rapidly with
an episode increasing from 330 to 370. After that, the return

Fig. 10. DG output and reserved load amount in 20 steps.

Fig. 11. Dynamic Multi-MG formation.

value becomes relatively stable with small oscillations. Since
the return value contains a comprehensive consideration of the
topology condition, voltage violation, branch overflow, switch
number limits and power balance, the convergence means the
Q-network can reasonably judge the performance of an action.
As the comparison shows, the output values of the DDPG
critic-network stay below zero, meaning it is an unsuccessful
learning process.

2) Comparison of Performances of Different Schemes:
After the Q-network learned to properly judge the performance
of actions, a series of uncertain output of DGs in the MDP
is randomly extracted to test the performance of the proposed
method. The total DG output in 20 steps is shown with the
green line in Fig. 10. With the same DG output conditions, the
proposed DRL based dynamic MMGF scheme (Dy_MMGF)
is compared with the conventional mathematical program-
ming based MMGF scheme (Con_MMGF) [4], [10]. In steps
1-16, both schemes hold all the loads. However, the con-
ventional MMGF scheme (Con_MMGF) sheds loads in steps
17-20, while the dynamic MMGF scheme (Dy_MMGF) still
holds all the loads. With the whole dynamic process consid-
ered, the DRL based scheme properly dispatches RCS actions,
and adjusts the topology based on newly updated system
conditions. According, it shows better load-supplying ability.

As shown in Fig. 11, the proposed deep RL method changed
the formation of MGs, and this action avoided load shedding.
The uncertain output of DG1 is reduced to 45MW ∼ 49MW
in steps 17-20. If the original MG formation is reserved, the
MG1 will have to shed load L2 to ensure power balance
and voltage security. Then, the Con_MMGF scheme has an
18 MW load reduction while the proposed Dy_MMGF scheme
successfully holds all the load in the entire system.

B. Performance of CM-DQN in IEEE 123-Bus System

The basic data of the IEEE 123-bus system is obtained
from [33]. The modified IEEE 123-bus system has 124 buses
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Fig. 12. Comparison of successful MMGF steps of two methods.

Fig. 13. Convergence progression of the return of IEEE123-bus system.

(including the main substation), 11 DGs, 125 lines and
13 RCSs. The original possible topology is 8192, and the
number is reduced to 3432 using the topology transformation
method in Section III-A. The size of input data is 125 × 5,
while the output size is 13× 1.

1) Comparison of Learning Abilities of DRL Methods:
Using the modified IEEE 123-bus system, the learning ability
of the proposed CM-DDQN is compared with the DDQN [28]
method and the CNN based DDQN (C-DDQN) without the
multi-buffer part.

As shown in Fig. 12, the large action space creates prob-
lems for the DDQN. Although it has the tendency to learn
proper behavior with an increasingly successful MMGF step
in the early period (about 1-50 episodes), the features are
lost in the following training episodes, and finally lead to
a failed training process. Without the multi-buffer part, the
learning ability of the C-DDQN is unstable. Although it has
learned proper actions with 20 successful MMGF steps in
some episodes (e.g., about 430 and 740 episodes), it quickly
lost the features and finally led to an unstable training process.
With an improved CNN structure and a multi-buffer design,
the proposed CM-DDQN successfully captures the feasible
topology feature after about 1000 training episodes.

The corresponding return values of the three methods are
demonstrated in Fig. 13. The DDQN and C-DDQN method fail
to provide proper evaluation for actions, while the return of
the CM-DDQN method reaches to a relatively stable condition.
That is because the CNN has strong automatic feature learning
ability in processing data with a grid-like topology with sparse
connectivity, while the designed reward value is based on the
AC power flow in the sparsely connected power system. In
addition, the multi-buffer design provides stable and satisfy-
ing experiences for the learning process, which avoids losing
good results explored previously. Note that the large fluctua-
tion in steps 1000-1200 is caused by the exploration design
(random action generation) with the lowest 1% probability.

Fig. 14. Voltage conditions of three MMGF topologies.

Fig. 15. Power loss and switch conditions of the whole process.

Even the Q-network is already well-trained in the training pro-
cess, so the surviving of feasible topology may be reduced by
following a randomly generated infeasible action.

2) Computation Performance of the CM-DDQN: Taking a
set of test data with a series of uncertain DG outputs as an
example, the proposed CM-DDQN ensures radial networks
with three topology forms (topo1, topo2 and topo3) in the
20 steps. Fig. 14 shows the worst voltage condition of the
three topology forms. Because the voltage belongs to the soft
constraint, there are few violations in the whole process with
the proposed CM-DDQN. However, these slight violations are
less than 1% of rated bus voltages and are easy to eliminate by
local compensates. The corresponding power losses and most
frequently operated switches 8-135 and 13-152 are presented
in Fig. 15. The topology transformation happened at step 1,
step 3 and step 17. The most frequently operated switch has
3 actions in the whole process, which is within the limit of
4 actions.

To verify the on-line application performance of the CM-
DDQN method, 100 episodes of complete MDPs (2000 steps)
are randomly extracted from the test data. The result is listed
in Table I. For the two systems, there are no hard constraint
violations, which means that the proposed method success-
fully ensures topology feasibility. For the soft constraints, the
small-scale systems all have satisfaction performance without
any violations. The large-scale system has 4 steps of voltage
violations of 5 buses. However, the violations are all within
0.005 p.u., since serious voltage violations bring high penalties
for the reward function. In the 100 episodes of MDP, there are
3 occurrences of switch violations with 5, 5 and 6 instances of
switch operations, respectively. This phenomenon can be mit-
igated by increasing the corresponding penalty in the reward
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TABLE I
RESULTS OF 100 EPISODES OF MDP

function. However, it is not suggested to enhance the consid-
eration of switching actions because it will not lead to security
problems, and over-focus on soft constraints will influence the
performance regarding hard constraints.

In on-line applications, the CM-DDQN provides a feasible
MMGF strategy with about 0.1 s computational time even for
the 123-bus system. Although the system scale is extended
from the 7-bus to 123-bus, the computation time only increases
slightly because the proposed method derives results from the
model-free DRL structure rather than via the actual power-
system model or power flow equation. This feature supports
the dynamic on-line MMGF scheme by providing a timely
topology-adjusting strategy according to newly updated system
conditions.

VI. CONCLUSION

The changeable conditions caused by extreme events reduce
the efficiency or even damage initially-formed MGs. In order
to improve the adaptability of the MMGF scheme, this paper
proposes a new DRL based dynamic on-line MMGF scheme.
A DRL based MDP is designed to provide a solution for
the transformable MMGF problem over a long time-horizon.
A topology transformation as well as a CNN based action-
decoupling Q-value is developed to handle the large action
space problem. The DDQN is improved to formulate the CM-
DDQN which enhances the learning ability for large-scale
systems. The case study results demonstrate that the proposed
dynamic on-line MMGF scheme enhances system resilience
by holding all of the loads using feasible topology adjustment.
The proposed CM-DDQN has strong learning ability, distin-
guished computation speed in real-time, and a satisfactory
security guarantee.
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