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ABSTRACT | High penetration of converter-interfaced renew-

able energy resources will significantly change the swing

dynamics between synchronous generators (SGs) in future

power systems. This article examines the impact of high

converter penetration on wave-like disturbance propagation

arising from sudden generator and load losses in radial

(1-D) and meshed (2-D) power systems. To keep the uniformity

assumption as converters are introduced, the rating of each

SG is decreased with a converter resource making up for the

reduction. Numerical simulations demonstrate that as the pen-

etration level of constant-power grid-following (GFL) convert-

ers increases, the speed of disturbance propagation increases

due to the reduced system inertia. Naturally, converters with

the capabilities to positively respond to disturbances would in

turn reduce the propagation speed. Analytical studies based
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on continuum models are presented for the 2-D system with

SGs and constant-power GFL converters in order to visualize

the disturbance propagation and validate numerical simula-

tions based on differential-algebraic equations. In addition,

fast active power control of converters can slow down the

electromechanical wave (EMW) propagation and even contain

it. These concepts are illustrated on the idealized radial and

meshed systems and a reduced model of the U.S. eastern

interconnection.

KEYWORDS | Converters; electromechanical wave (EMW)

propagation; renewable energy resources; U.S. eastern

interconnection (EI).

I. I N T R O D U C T I O N
Disturbance propagation [1], [2] arising from sudden gen-
erator and load losses typically precedes electromechanical
swing between generators in a large power system [4].
The seminal work in [1] leads to a large body of addi-
tional investigations, such as [2], [5]–[8], where the term
“electromechanical wave (EMW) propagation” has been
adopted [3], [5], [8], [10], [11] to describe such wave-
like propagation of electromechanical motions in gen-
erators across the system following a disturbance. With
the availability of high sampling rate data from phasor
measurement units (PMUs) [9], EMW propagation can be
observed and measured, providing opportunities to verify
the results mentioned in [1] for real systems and allowing
further exploration and understanding of power system
dynamics. It also enables application development such as
locating disturbance sources [10] and optimal setting of
protective relays [11].
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The study of EMW propagation has been proposed for
1-D radial systems and 2-D meshed systems. A homo-
geneous 1-D radial power system can be modeled in
the limit as a continuum model represented by a par-
tial differential equation (PDE), also known as the wave
equation, from which the EMW propagation speed can
be derived [1]. Extension to the radial structure includes
the modeling of a longitudinal East Australia system [6]
and ring systems [2], [3]. Analysis of 2-D power systems
using the continuum model is more difficult, depending
on the specific structure of the meshed system. In [8], a
uniform 2-D square power grid is used to demonstrate the
EMW propagation without the constant voltage assump-
tion. A New England power system model is studied
in [5] and a four-area Australian system is investigated
in [6]. Li et al. [7], [8] also developed the use of static
var compensator (SVC) control system to mitigate EMW
propagation. Sahyoun et al. [8] also proposed the use of
distributed voltage and power control to reduce the EMW
disturbance.

This article investigates the impact of high penetration
of converter-interfaced renewable resources on EMW prop-
agation and its mitigation using fast converter active power
control. Any inertia of a renewable resource behind a
converter is isolated from the ac power grid, leading to
the low-inertia phenomenon of future power systems with
high renewable penetration. As shown in this article, given
a generator-trip disturbance, a system with low inertia sees
an increase in both the EMW propagation speed and the
depth of the frequency nadir. A faster wave propagation
has advantages, such as eliciting faster governor response,
but also disadvantages, such as premature load shedding
or unintended operation of relays [12]. Thus, a proper
understanding of such tradeoff is important, especially for
systems with high levels of converter-interfaced renew-
ables. To remedy this situation, various converter control
functions have been proposed, such as emulating a con-
ventional synchronous generator (SG). A more advanced
approach is the virtual synchronous generator (VSG) con-
cept [16], [18], which will be investigated in Section IV-C.

Increasingly, there is a recognition that converter
active power controls can be exercised much faster than
SGs [20], including tighter frequency regulation using fast
power ramp-up [13] and transient stability enhancement
using fast power reduction [15]. While converter-based
resources may not be able to sustain additional power
outputs for long periods due to active power resource
availability, they can be utilized for controlling EMW prop-
agation, which is in the time frame of the first swing
(a few seconds). In this article, fast converter control is
designed not only to slow down the EMW propagation
but also to contain it. Fast converter power control can
be more effective than SVC [6], [7], which only regulates
the effective series reactance connecting the synchronous
machines.

The analysis, simulation, and control designs are per-
formed using a 1-D radial power system and a square 2-D

meshed power system. To keep the homogeneity assump-
tion in these systems as converters are introduced, the
rating of each SG is decreased with a converter resource
making up the reduction. Recognizing that accurate wave
equations considering actively controlled inverters are
difficult to formulate, we derive and solve the analyt-
ical equations for 2-D systems with SGs and constant-
power grid-following (GFL) converters using PDEs, that
is, the wave equation analysis concerns the dynamics
of synchronous machines and does not account for the
dynamics of inverters with inertial or primary frequency
response capabilities. Nonetheless, disturbances propagate
in a wave-like manner, and the analysis of the remaining
synchronous machines alone can provide insights into
the impact of inverters on wave characteristics. Next, the
impact of converters on the EMW propagation speed is
studied numerically by simulating differential-algebraic
equation (DAE)-based dynamics. Furthermore, the EMW
propagation in the 2-D system is compared with that in a
reduced model of the U.S. eastern interconnection (EI).

The contributions of the article include: 1) the method
of modeling high renewable penetration in a 1-D sys-
tem for EMW propagation investigations; 2) extension
of the analytical EMW speed result in [1] to systems
with constant-power GFL converters; 3) numerical studies
of the impact of VSG models on EMW propagation in
1-D systems; 4) analytical studies of EMW propagation
in 2-D systems with constant-power GFL converters; and
5) converter control design to slow down and contain
EMW propagation in 1-D and 2-D systems.

The remainder of this article is organized as follows.
Section II describes converter models for renewable energy
resources. Section III shows the 1-D system model, and
Section IV contains the 1-D system simulation results
with converters and the impact of VSG models. Section V
presents the converter control design to mitigate a gen-
erator loss event, thus slowing down the EMW speed
and the spread of the disturbance. Section VI shows the
2-D system model, the EMW PDE formulation, and the
analytical solution. Section VII contains the 2-D system
simulation results. Section VIII shows the result of applying
the converter control to mitigate EMW propagation in
the 2-D system. The Appendix shows the derivation and
solution of the 2-D EMW equations, along with parameters
used in the 2-D square system to approximate the EI
system.

II. C O N V E R T E R M O D E L S F O R
R E N E W A B L E E N E R G Y I N T E G R AT I O N
This section describes the converter models used in this
article. Fig. 1 shows the converter model connected to the
ac network with an active power supply on the dc side. The
power supply can be either a wind turbine, a solar PV sys-
tem, or a battery system [13], and a control system can be
implemented on the converter [14]. Fig. 2 shows the main
function blocks of the converter control system, where the
controllers are categorized into “reference generators” and
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Fig. 1. Schematic of a grid-connected converter model.

“reference trackers.” Reference generators calculate the
power, voltage, or speed references based on the external
network and internal device measurements [17]. Refer-
ence trackers are subdivided into the electrical controls as
the outer loops and the converter interface as the inner
loops [12]. In models without reference generators, the
references remain constant at the steady-state values.

For renewable energy integration, the converter inter-
faces can be controlled in the GFL or the grid-forming
(GFM) mode [14]. GFL converters, shown in Fig. 3, accept
active and reactive power references (Pref and Qref) from
external controllers to compute the internal current refer-
ences based on measured network voltages. Notably, GFL
converters utilize phase-locked loops (PLLs) to synchronize
with the grid [12], [32]. GFM converters, shown in Fig. 4,
accept voltage and angular frequency references (Vref and
ωref) to compute internal angle and voltage references
before computing the current references [16]. GFM con-
verters synchronize with the grid based on the internal
reference speed ωref, which can be generated by droop
and/or VSG control [26].

GFL converters can be linked with external controllers
to respond to voltage and frequency deviations, as shown
in Fig. 28 in Appendix D. The voltage control loop mod-
ifies the reactive power reference Qref typically using a
proportional-integral (PI) controller based on voltage devi-
ation. Also, the frequency control loop modifies the active
power reference Pref using a proportional-derivative (PD)
controller based on frequency deviation, the derivative of
which is the rate-of-change of frequency (RoCoF). These
controllers will impact the EMW propagation by affecting

Fig. 2. Overview of the control systems of grid-connected

converters.

Fig. 3. GFL converter: inner loop and outer loop diagrams.

voltages and active power outputs. Their effects will be
quantified by simulation in Sections III–V.

The inner current control loop of both GFL and GFM
converters is used for representing the average output of
the switching power electronics. For system-level stability
studies, the inner loop PI controllers can be simplified with
a first-order delay for the current, followed by algebraic
equations that link the converter terminal voltage u with
the grid voltage v [21]. For example, Fig. 5 shows the GFM
converter based on such simplification.

III. H O M O G E N E O U S 1-D
R A D I A L S Y S T E M
Consider the uniform 1-D system of N + 1 buses and N

transmission lines shown in Fig. 6 [22]. Each bus has
one generator attached, and generators G1 to GN are
identical in MVA rating Sn and inertia H . The classical
generator model consisting of one generator angle state
and one generator speed state is used throughout this

Fig. 4. GFM converter: inner loop and outer loop diagrams.
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Fig. 5. GFM converter with simplified inner loops.

article unless mentioned otherwise. Generator G0 can use
arbitrary parameters as will be disconnected to create a
disturbance. Active power Pe is supplied from G0 and G1

to GN , which acts as a load. Each of the other generators
(G2–GN−1) supplies its local load such that the power flow
from Bus 1 to Bus N through each line with reactance X

is also Pe. Converters are added in parallel with G2–GN−1,
which do not inject active power to the grid at the steady
state.

To study the impact of the converters while preserving
the homogeneity from Bus 2 to Bus N − 1, the ratings of
the generators G2–GN−1 will each be reduced to (1−ρ)Sn

and a converter with rating of ρSn will be installed on
the same generator bus, where 0 ≤ ρ ≤ 1 is the ratio of
renewable/converter penetration, as shown in Fig. 6. To
preserve at least one swing mode in the system, generators
G1 and GN are kept at their original ratings.

The disturbance considered is the trip of generator G0

by opening the circuit breaker (CB) that connects Bus 0
to Bus 1. This disturbance will result in a frequency drop
propagating from G1 to GN . Note that such disturbances
may not always provoke steam governor response, as is
the case observed in the U.S. EI [33]. If the renewables
are interfaced by GFL converters that are not configured to
respond to frequency drops, the EMW propagation speed c

then requires inserting a factor (1−ρ) in the formula in [1]
to account for the inertia reduction, effectively increasing
the propagation speed, given by

c =

�
Ω

2(1 − ρ)hx
pu-length/s (1)

Fig. 6. 1-D radial power system.

Fig. 7. Base case EMW propagation showing frequencies at all

buses.

where Ω = 2πfn, h = dH/d�, x = dX/d�, and fn is
the nominal frequency in hertz. All quantities need to
be converted to the same power base, and the base for
distance is the total length of transmission lines in the
postfault system. Note that (1) is derived from the contin-
uum model of the 1-D system for describing the speed of
the forward and backward waves. In actual systems, wave
reflections will introduce slight errors in the measurement
of EMW propagation speed toward generator GN , as will
be discussed in Section IV.

IV. 1-D S Y S T E M A N A L Y S I S
A. Base Case

In the base case (ρ = 0) with N = 11, each SG is rated
at Sn = 200 MVA, H = 3 s, and damping coefficient D =

1 pu in the machine base. Each reactance connecting the
generators is X = 0.1 pu in the 100-MVA base. The initial
outputs of G0, G1, and G11 are 5, 145, and −150 MW,
respectively. The introduced disturbance at t = 0.1 s is the
CB opening event, which will cause sequential frequency
drops on all buses.

To compute the theoretical EMW propagation speed,
let the length between Buses 1 and N be 1 pu-length. In
100-MVA base, the system with 11 generators and 10 lines
has

x = 0.1 × 10/1 = 1 pu-reactance/pu-length

h = 2 × (3 × 11)/1 = 60 s/pu-length. (2)

Substituting h and x into (1) yields c = 1.690 pu-
length/s. Thus, the predicted EMW propagation time from
Bus 1 to Bus 11 is 1/c = 0.592 s.

We note that the EMW propagation time between two
buses is measured as the time difference for the bus
frequencies to drop to a chosen threshold. In this case, the
threshold is chosen as 0.9999 pu (59.994 Hz).1 As shown
in Fig. 7, the disturbance takes 0.04 and 0.6 s to reach

1The threshold is chosen based on the amount of generation or load
tripped and the total system inertia. It thus varies with the disturbance
and the system model.
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Table 1 Speed Based on (1) and Arrival Times From (1) and Simulation

Buses 1 and 11, respectively. Hence, the EMW propagation
time is 0.560 s, which is close to 0.592 s as predicted
by (1).

For the last few buses, the frequency drop is more
rapid than the first several buses because, by the time the
disturbance propagates to the other end, the frequency
of the first few buses has partially recovered from the
nadir, causing larger power mismatches and thus larger
deceleration at the terminal generators. The larger decel-
eration causes the terminal buses to reach the threshold
more quickly. A similar phenomenon can be observed in
the 2-D system discussed in Section VI and its visualization
in Fig. 19.

B. Systems With Converter-Interfaced
Renewable Generators

Radial systems with converter-interfaced renewable
generators (RGs) are created with ρ = 0.25, 0.5, and 0.75.
The models employed are the second-generation generic
models [17], which are fundamentally GFL converters.
Such models have the capability to regulate the bus voltage
by a PI controller. We also extend the GFL converter models
to emulate inertial response using a derivative control
based on the local frequency. Note that for GFL and GFM
converters providing grid support and control functions,
models with much more details would be required to study
wave propagation at the interfaces between the converters
and the ac power grid in terms of dispersion and reflection.
The aim of this article is to examine converter control
actions at a higher level using the DAE simulation. This
section will investigate how voltage control and inertia
emulation by renewables affect the EMW propagation.

1) Impact of Voltage Control: First, the GFL converters
are controlled to constant Qref, namely, without voltage
control, and simulated for the same disturbance. The prop-
agation speeds and arrival times are shown in Table 1,
in which the analytical results from (1) are supported by
simulation results with errors less than 10%.

Then, GFL converters are applied to control reactive
power setpoint to regulate the bus voltage. Systems exam-
ined in this article have typical line reactances to support
sufficient amount of power transfer. The control parame-
ters for the converters are VREF = 1.0 pu, Kvp = 0.5,
and Kvi = 0, where VREF is the voltage setpoint and Kvp

and Kvi are the proportional and integral control gains,
respectively. Fig. 8 shows the results of the three voltage-
controlled RG scenarios. As observed, the impact of voltage

control on the EMW propagation speed is limited and can
be neglected.

2) Impact of Inertia Emulation: A converter control that
can impact the EMW propagation speed is to modify the
active power reference based on the RoCoF [25]. Known
as inertia emulation, such a derivative control provides
additional active power support to emulate the inertial
response natural to SGs. The additional power ΔPIE that
adds to Pref in Fig. 3 is calculated from the following:

ΔPIE = Kdf × RoCoF (3)

where Kdf is the frequency derivative control gain and
RoCoF is measured locally. Kdf has the same dimension
as inertia. Still, the impact of Kdf from GFL converters is
determined by both the power and current control loops,
which are subject to delays and nonlinearities such as
limiters. Thus, the impacts on the EMW propagation speed
have to be shown by simulation.

Fig. 9 compares the frequency at Bus 11 for ρ = 0.25,
0.5, and 0.75 with different gains. The vertical dashed lines
correspond to the arrival time at Bus 11 for ρ = 0. Overall,
inertia emulation control can significantly slow down the
EMW propagation. A higher gain can be more effective
in slowing down the EMW propagation at the expense of
more active power headroom on the dc side. Also, it can
be observed that the gain Kdf to restore to the original
propagation time increases from below 20 for the 25% case
to above 20 for the 50% and 75% cases.

C. Virtual Synchronous Generators

An alternate means of providing inertial response is to
emulate SGs using GFM converters. Following a distur-
bance, the deviation of the converter power output can be
utilized for calculating the speed reference based on the

Fig. 8. Frequency at Bus 11 with and without voltage control.
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Fig. 9. Bus 11 frequency with inertia emulation from

converters—top: 25% RG, middle: 50% RG, and bottom: 75% RG.

swing equation

2HVSGω̇VSG = Pset − Pe − D(ωVSG − 1) (4)

where ωVSG is the per-unit speed of the converter internal
reference frame, HVSG is the emulated inertia in seconds,
Pset is the per-unit active power setpoint, Pe is the per-
unit converter active power output, and D is the emu-
lated damping coefficient in per unit. The variable ωVSG

integrated from (4) is used as the speed reference ωref in
Figs. 4 and 5, and the corresponding control loop to gener-
ate ωVSG is shown in Fig. 29 in Appendix D. GFM converters
with such inertial response capability are referred to as
VSGs [26]. This section investigates how VSG parameters
influence the EMW propagation speed using the simplified
GFM converter model in Fig. 5.

Two parameters in the VSG model can affect the EMW
propagation speed: the emulated inertia HVSG and the
outer loop voltage control gain Kp, which is the propor-
tional gain for the PI controllers shown in Fig. 5. Initially,
the amount of reduced SG inertia is compensated exactly
by a VSG with the same inertia and a small gain Kp = 0.3.
Fig. 10 shows the EMW propagation from Bus 1 to Bus
11 for systems with ρ = 0.25, 0.5, and 0.75. Further
investigation shown in Fig. 11 shows that further increas-
ing the inertia HVSG only has minor impact on the EMW
propagation speed, and a small value for HVSG is common
for VSG [12]. On the other hand, the investigation shows
that the voltage control gain has a significant impact on
reducing the EMW propagation speed.

The impact of the voltage control gain Kp is analyzed
using the system with ρ = 0.5 as an example. Fig. 12
shows the frequency at Bus 11 for Kp = 0.3, 0.65, and
1.0, and the corresponding arrival times are 0.585, 0.638,

Fig. 10. Bus frequency with and without VSG. From top to bottom:

ρ � 0.25, 0.5, and 0.75.

and 0.707 s, respectively. It is observed that increasing Kp

will slow down the EMW propagation. With Kp = 1.0,
the EMW propagation speed is slightly lower than that
of the fully synchronous system. Also, the active power
output patterns of SGs and VSGs on Buses 2–10 are shown
in Fig. 13, where inertial response of VSGs is observed
but more limited in magnitude compared with SGs. This
power output difference is that the SG output is a nat-
ural response to the change of network flow through sta-
tor/rotor electromagnetic fluxes, whereas the VSG output
is a controlled response.

V. E M W M I T I G AT I O N
Converters with energy supply have the capability to inject
additional active power into the network at a fast time
scale. Such a capability can potentially be used to mitigate
EMW propagation, which is discussed in this section. In
contrast, the active power maneuvering of steam and
hydraulic turbines is much slower and thus cannot be used
for this purpose. Control algorithms presented next will be
applied to Type-3 wind turbines but is also applicable to
Type-4 wind turbines or PV plants.

Fig. 11. Bus frequency for ρ � 0.5 with different VSG inertias.
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Fig. 12. Bus frequency for ρ � 0.5 with different voltage control

gains.

A. Active Power Flow Control

Consider the active power flow control between the
two buses shown in Fig. 14. The injections P1 and P2 on
Buses 1 and 2, respectively, are controllable. With power
flowing from Bus 1 to Bus 2, the active power conservation
equations dictate that

Pin + P1 = P12 = Pout − P2. (5)

Decompose the individual power flow into a steady-state
component, denoted by a bar over the variable, and a
perturbation component denoted by the prefix Δ as

Pin = P̄in + ΔPin, P12 = P̄12 + ΔP12

Pout = P̄out + ΔPout. (6)

The aim is to introduce an attenuation of the incoming
perturbation ΔPin by controlling the two active power

Fig. 13. SG and VSG power outputs for ρ � 0.5 and H � 3 s.

Fig. 14. Two-bus system with two active power injections.

injections. Consider the control law

P1 = −K1ΔPin, P2 = −K2ΔP12, 0 ≤ Ki ≤ 1. (7)

Each injection monitors the upstream line flow perturba-
tion and enacts a proportional control response to counter
the flow deviation. Substituting the control law (7) into the
active power flow equations (6), assuming that all flows
have the same steady-state value, results in

Pout = P̄in + (1 − K1)(1 − K2)ΔPin. (8)

Thus, the perturbation component ΔPin will be attenuated
by (1 − K1)(1 − K2). In the case of a radial connection of
N wind turbine generators (WTGs), the measured pertur-
bation on the line between Buses N − 1 and N is

ΔPout =

�
N�

i=1

(1 − Ki)

�
ΔPin (9)

which can be small when Ki, i = 1, . . . , N , are close to
unity or N is large. In the case of a Type-3 wind tur-
bine [24], the active power injection will be superimposed
on the active power command of the plant. The WTG
realizes an active power current command as

Ipcmd =
Pset − KΔP

Vt
. (10)

The command is realized as output current from the
converter, with a time constant of 10–20 ms. The power
setpoint Pset is derived by a torque controller, modulating
the speed of the WTG. Nonetheless, these dynamics are
slower than the scale we exercise our control to halt the
disturbance. For the full active power control dynamics,
the reader can refer to [24].

B. Reactive Power Damping Control

Active power injection by the converters will not
completely mitigate EMW propagation because the
electromechanical oscillations between the synchronous
machines will still persist. An expedient means to damp
the oscillations is to use reactive power injection.
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In a Type-3 wind turbine, active and reactive power can
be controlled in a decoupled manner. The reactive power is
controlled by the flux of the WTG units. The reactive power
control dynamics can be summarized as [24]

Qord =
1

Tcs + 1

�
Kpv

TV s + 1
+

Kiv

s

��
Vref − Vreg

Trs + 1

�
(11)

Rerr =
KQi

s
(Qord − Q) (12)

Efd-cmd =
KV i

s
(Rerr − V ) − KQ

s
ΔP (13)

where Qord is the reactive power command of the plant,
Rerr is the local dynamic voltage reference, and Efd-cmd is
the flux command, which is applied behind an equivalent
reactance X. Kpv and Kiv are the PI gains of the voltage
control, Tc is the time constant of the reactive power
command dynamics, TV is the proportional gain filter time
constant, Tr is the regulated voltage transducer time con-
stant, KQi is the gain of the reactive power regulator, and
KV i is the gain of the local voltage regulator. V denotes
the local WTG voltage and Vreg is the point of which the
WTG regulates voltage.

To provide damping to electromechanical swings, one
approach is to modulate the reactive power injection using
the line power flow perturbation as the input signal. The
damping controller, in certain situations and with particu-
lar choice of feedback signals, can require a phase lag in
the compensator design [23]. The feedback signal can be
incorporated into the Efd-cmd dynamics (the converter time
delay is omitted as it is in the range of milliseconds). The
integrator provides the necessary lag to modulate the reac-
tive power to introduce damping to the electromechanical
swings.

In addition, assuming that the WTG has the headroom to
drive ΔP to zero, the damping control term in (13) will not
affect steady-state voltage regulation. To demonstrate the
efficacy of the design, for the radial system, the response
of the first WTG in the chain is plotted in Fig. 15, for the
values 0 and 0.2 of KQ, while the active power control is
also exercised. The values for this design were tuned via
an iterative process while considering the damping per-
formance of the system and the disturbance propagation
speed. Multiple-input–multiple-output techniques can be
utilized in more mesh and complex systems.

C. Application to Radial System

To illustrate the performance of the proposed control,
the 1-D system in Fig. 6 with 100% converter penetration
is investigated. The WTG model in [24] is used to model
the converters. Note that the resulting network still has two
synchronous machines on Buses 1 and 11. The disturbance
is the separation of G0 from the network at t = 0 s. Several
values of Ki are used, and the reactive power damping
control is tuned to damp the oscillation between G1 and
G11. Without this mitigation control, the EMW propagation

Fig. 15. WTG2 active power output for different damping control

gains.

time for Bus 11 to reach a frequency of 0.9999 pu drops
to 0.199 s, as shown in Fig. 16. When the mitigation
control with K = Ki = 0.4 is applied to all converters
i = 2, . . . , 9, and the damping control KQ tuned to 0.1, the
propagation waves are shown in Fig. 16(b). For K = 0.4,
the frequency drop does not fall below 0.9999 pu. Thus,
the EMW propagation is completely mitigated for buses far
from the disturbance source.

For K = 0.4, the additional active power injection
provided by the converters on Buses 2–10 is shown in
Fig. 17. As expected, converters closer to the disturbance
provide more active power support. The damping con-
trol function also works well with the electromechanical
swings subsiding within 3 s.

VI. 2-D M E S H E D S Q U A R E S Y S T E M
Practical power systems typically cover well-connected
geographical regions and thus should be modeled as

Fig. 16. Radial system SG speeds ρ � 100� with and without

active power flow control.
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Fig. 17. WTG active power generation with active power flow

control.

2-D meshed systems. Consider the 10 × 10 grid system in
Fig. 18 representing a uniform 2-D power system. Node
(i, j) denotes the bus with generator Gi,j with MVA rating
Sn and inertia H on the generator base. All the generators
and the reactance X (on the MVA base Sn) between each
pair of buses are identical. Active power Pe is supplied
from G1,1 to G10,10, which acts as a load. The considered
disturbance is the load trip at Node (1,1). This section will
establish the continuum model-based PDE to model the
EMW propagation, solve the PDE analytically, and compare
the EMW propagation pattern with that from the DAE
model.

A. Analytical Derivation of 2-D Wave PDE

While it is intriguing to develop analytical PDE formu-
lations for systems with detailed converter models, there
are fundamental difficulties in considering inverters with
multiple control loops in wave equations. The inclusion of
controllers will affect converter power outputs and result
in a complex PDE model, which analytically reveals no
new information on the propagation characteristics and is
numerically extremely challenging to solve. We consider
SGs and constant-power-controlled GFL converters when
deriving the EMW equation for a 2-D meshed power system
using the continuum and dc power flow assumptions. The
full derivation is shown in Appendix A following the same
PDE for a rectangular membrane wave problem [28]. Here,
the temporal and spatial variations of the rotor angle δ in
the 2-D meshed power system continuum model are

δ̈ = c2 (δxx + δyy) (14)

where δ̈ is the second-order time derivative of δ, δxx

and δyy are the second-order spatial derivatives in the
horizontal and vertical directions, and c is a constant that,
for a square system, shares the same formula as in (1).

Note that c, such as in the 1-D system, has the dimension
of pu-length/s. Analytical solutions to (14) at the end of
this section will verify that c is the propagation speed.

To solve for δ(x, y, t), techniques such as separation of
variables can be applied, followed by the application of the
initial conditions and boundary conditions. The resulting
solution

δ(x, y, t) = H(x)Q(y)G(t) (15)

where H(x), Q(y), and G(t) are the separated functions
as derived in Appendix B. Here, we show the development
of the chosen initial and boundary conditions for a square
grid model. Since the EMW propagation of interest is in the
time frame of the first swing, the propagation will be best
observed if the system starts in a steady state before the
disturbance is applied. The disturbance chosen happens
at just one corner of the system.2 Therefore, the initial
conditions are chosen as

δ(x, y, 0) = 0

δ̇(x, y, 0) =

�
Ω × Δω0, if x = y = 0

0, otherwise
(16)

where (x, y) are the coordinates in the continuum model
and Δω0 is the initial speed deviation at the source (0, 0).
This disturbance can be considered as an impulse as speed
at the disturbance initiation point is changed instanta-
neously.

The boundary conditions constrain the motion of the
generators on the four edges over time. We observe that
the sensitivity of rotor angles on the boundary to infin-
itesimal spatial variation along the direction is zero. In
other words, when the wave traveling along the x-axis
reaches the end, the spatial variation with respect to the

2This is motivated by a disturbance initiated in Florida of the U.S.
eastern power grid in 2008.

Fig. 18. 2-D meshed power system.
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Fig. 19. EMW propagation in the 2-D system based on PDE. (a) and (b) Forward EMW propagation to the edges (t � 0.33 s and t � 0.56 s,

respectively). (c) and (d) Continuing propagation to the diagonal node and the subsequent reflections (t � 0.77 s and t � 0.90 s,

respectively). (e)–(h) Superposition of reflection waves (t � 1.05 s, t � 1.20 s, t � 1.35 s, and t � 1.51 s, respectively).

displacement along the x-axis can only become zero. Thus,
the wave has to travel in the perpendicular direction.
Therefore, the boundary conditions are given by

0 =
∂δ

∂x

����
0,y

= Hx(0)Q(y)G(t)

0 =
∂δ

∂x

����
0,a

= Hx(a)Q(y)G(t)

0 =
∂δ

∂y

����
x,0

= H(x)Qy(0)G(t)

0 =
∂δ

∂y

����
x,b

= H(x)Qy(b)G(t) (17)

where a and b are the length of the grid in the x-axis and
y-axis, respectively.

The final solution to the 2-D EMW wave equation is a
double series summation with indices m, n ∈ N, which is
given by

δ(x, y, t) =
∞	

m=1

∞	
n=1

B�
m,n

× cos

mπ

a
x
�

cos

nπ

b
y
�

sin(λm,nt) (18)

where

λm,n = cπ

�
n

b

�2

+

m

a

�2
1/2

(19)

B�
m,n =

4

abλm,n

� b

0

� a

0

f(x, y) cos

mπ

a
x
�

× cos

nπ

b
y
�

dxdy. (20)

In a square grid, one can use a = b = L. Note that λm,n

are the eigenvalues of the PDE. As the orders of m and n

increase, the amplitude B�
m,n will decrease.

B. Approximate Solution to the 2-D Wave PDE

The solution of the PDE can be approximated with
sufficiently high orders. First, the propagation speed c is
calculated. Suppose that each edge of the 2-D grid has a
length of a = b = 1 pu. Next, we apply the same parameters
of generators and transmission lines to the system with
ten generators and nine lines on each edge, namely, each
generator has H = 6 s, and each line has X = 0.1 pu. Thus,
c is given by

c =

�
Ω

2mx
=

�
2πf

2 × 60 × 0.9
= 1.868 pu-length/s. (21)

Substitute c into (18) and evaluate the expression for
m = 1, 2, . . . , 10 and n = 1, 2, . . . , 10, and we can obtain
a high-order solution with sufficient accuracy. The spatial
solution is discretized in a grid with Δx = Δy = 0.01.
Fig. 19 visualizes the EMW wave in the initial propagation
from (0, 0) and the subsequent reflections. In Fig. 19(a),
one can clearly see the wavefront as it propagates in a
quarter circle. Fig. 19(b) shows that the other edges in
the x-axis and the y-axis reach the largest magnitude at
t = 0.5601 s. While the EMW continues to move toward
the diagonal, waves reflect at the two boundaries opposite
to the source of the disturbance, as shown in Fig. 19(c).
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Fig. 20. EMW propagation in the 10 × 10 2-D meshed power system based on DAE. (a) t � 0.33 s. (b) t � 0.56 s. (c) t � 0.77 s. (d) t � 0.90 s.

After reaching the diagonal, the EMW also reflects in a
quarter-circle shape, as shown in Fig. 19(d)–(f). It is also
observed that the magnitude of the wave is larger in
Fig. 19(b) than Fig. 19(a) and even larger in Fig. 19(c)
due to the geometry of the square system and that the
disturbance starts at a corner. The remaining subfigures
show the superposition of multiple reflection waves. Also,
the theoretical propagation time to the opposite nodes, i.e.,
(0, 1) and (1, 1), is given by t = 1/c = 0.535 s, which is
verified in Fig. 19(b).

C. Comparison of the PDE and DAE Solutions

To validate the PDE-based method for modeling 2-D
wave propagation in power systems, the meshed power
system shown in Fig. 18 is simulated using a power system
simulator as a comparison. The following settings are
used to create the same system configuration and initial
conditions.

1) Since the generator transient reactance X �
d is not

modeled in the PDE, all generators have X �
d =

10−4 pu to minimize its impacts.
2) All generators are initialized at zero power output so

that the initial rotor angles δi,j are uniformly zero.
3) After the initialization of the disturbance, the speed

on the generator at (1, 1) is increased to ω(1,1) =

1.08 pu as a disturbance.

The simulation based on DAE is performed in
ANDES [29] and visualized in Fig. 20, and the timestamps
shown are the same as in Fig. 19(a)–(d). The EMW
propagation can be clearly seen in Fig. 20 by observing
the wavefront shown in lighter colors. Comparing the
DAE solution with the PDE one, one can observe the
similarity in the pattern of EMW propagation. For example,
the wavefront arrival at the end of the x- and y-axes is
observed in Figs. 19(b) and 20(b), so are the reflection
waves in Figs. 19(d) and 20(d). Also, due to discretization,
the waveform from the DAE solution appears less pro-
nounced and more diffused, resembling a coarse-grained
solution of the PDE in a multigrid method. Nevertheless,
the comparison clearly demonstrates the effectiveness of
the PDE-based continuum model for EMW propagation
study in 2-D power systems.

VII. 2-D S Y S T E M S I M U L AT I O N
R E S U L T S
While a continuum PDE model can be used to emulate
a power system with generators represented as classical
models and converters modeled as constant-power injec-
tions, in which any inertia behind the converters is not
visible from the grid, EMW propagation in 2-D systems
with full models of converters needs to be investigated
using DAE-based simulations. For the square system con-
sidered here, the boundary nodes from (1, 1) to (1, 10) and
from (1, 1) to (10, 1) form a horizontal-direction radial
system and a vertical-direction radial system, respectively,
allowing the use of 1-D system arrival time computation.
For the interior nodes and the boundary nodes from (2,
10) to (10, 10) and from (10, 2) to (10, 10), they all have
two incoming EMWs such that the 1-D system analysis does
not apply. Hence, the behavior of this 2-D system with and
without converters will be investigated by simulation.

To study the impact of converters while keeping the
uniformity throughout the 2-D system, the ratings of
the generators, except for G1,1 and G10,10, will each be
reduced to (1 − ρ)Sn and a converter with rating of ρSn

is installed on the same generator bus, where 0 ≤ ρ ≤ 1

is again the percent of converter penetration (see Fig. 21).
The disturbance considered is the trip of a load ΔPe on Bus
(1, 1). At a result, the excess generation on Bus (1, 1) will
propagate as a rising frequency wave toward Bus (10, 10).

A. Base Case

The 2-D system uses the same generator and reactance
parameters of the 1-D system. The simulated propagation
time of the base case for the threshold of 60.03 Hz is listed
in Table 2. Due to the system symmetry, the propagation
time is symmetric with respect to the main diagonal.
With X = 0.1 pu and H = 6 s on 100-MVA base, the
propagation speed is with c = 1.868 pu-length/s as given
in (21), and the predicted time from Node (1,1) to Node
(1,10) is thus 0.535 s. The prediction differs from the
simulated propagation time of 0.532 s by 0.5%.

As expected, Table 2 shows that the propagation times in
the internal nodes are not uniform. An important observa-
tion is that the internal nodes have shorter arrival time. For
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Table 2 Time to Reach the Frequency Threshold for Buses in the 2-D System

Fig. 21. Converter model for 2-D system.

example, the travel time from Node (1, 1) to Node (1, 3)
is 0.104 s, whereas that of Node (1, 1) to Node (2, 2) is
0.082 s, even though Nodes (1, 3) and (2, 2) are both
two branches away from Node (1, 1). This phenomenon
is because Node (2, 2) has two incoming EMWs, whereas
Node (1, 3) has one incoming EMW and two outgoing
EMWs. Another example is that the travel time from Node
(1, 1) to Node (1, 10) is 0.532 s, whereas that from
Node (1, 10) to Node (10, 10) is 0.190 s. Thus, in a 2-D
square system, the EMW from a disturbance starting at
one corner may travel at some nominal speed initially but
would accelerate when approaching the opposite corner.

Also, the average EMW propagation speed along the
boundaries is not the same as that across the diago-
nal. Table 2 shows that the propagation time across
the diagonal is 0.722 s, corresponding to the speed of
1.959 pu-length/s based on the diagonal length of

√
2. Thus,

the predicted speed c is within 4.65% of error of the
measurement across the diagonal.

B. Florida Event Replication on the 2-D System

To support the 2-D system EMW propagation, this
section studies the wave propagation of the 2008 Florida
generator-load trip event [4] using the proposed 2-D uni-
form system. From the recorded data [4], the EMW took
approximately 2 s to propagate from Florida to Manitoba.
The event is simulated with ANDES [29] in the large-
scale testbed [30] using the CURENT ERC EI reduced-
order model [31] with a load-shedding event at 1 s. The
frequencies at several locations in the system are shown
in Fig. 22. Compared to the measured PMU data for the
real event (see [23, Fig. 10.16]), although the maximum
frequency deviations are different, the simulated frequency

Fig. 22. EMW propagation of the simulated Florida event

across EI.

response show qualitative similarity with the EMW arriving
first in Tennessee and subsequently in Manitoba, where the
EMW takes 2.162 s to arrive.

The event is replicated approximately in the uniform
2-D system by selecting the appropriate machine inertia
and line impedance, where Node (1, 1) represents Florida
and Node (10, 10) represents Manitoba. The calculation
of the equivalent impedance and inertia are provided in
Appendix C. The simulation performed with the equivalent
parameters but a smaller disturbance is shown in Fig. 23.
For the frequency threshold of 60.002 Hz, the load trip
event at 1 s arrives at Bus (1, 1) at 1.20 s and Bus (10, 10)
at 2.996 s, yielding a propagation time of 1.796 s. This

Fig. 23. EMW propagation in the 2-D system replicating the

Florida event.
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Fig. 24. Frequency at Bus (1, 10) of the 2-D system for different

renewable levels.

propagation time is within 17.0% of the reduced EI system
propagation time. The ability of the 10 × 10 2-D system to
approximate the propagation speed is encouraging as the
reduction of the EI system to the 10 × 10 system is quite
drastic.

C. Cases With Converter-Interfaced
Renewable Resources

Now, the impact of renewable resource penetration is
simulated for the 2-D system with the load trip disturbance
and the SG and inverter pairing, as shown in Fig. 21. The
frequencies of Bus (1, 10) in 2-D systems with renewable
levels ρ = 0.25, 0.5, and 0.75 are shown in Fig. 24. For the
threshold of 60.03 Hz, the same threshold as in the base
case, the EMW propagation time from Bus (1, 1) to Bus
(1, 10) is 0.449, 0.355, and 0.238 s for the three renewable
scenarios, compared with 0.532 s for the base case. The
propagation time to Bus (10, 10) in the three scenarios are
0.616, 0.493, and 0.337 s compared to 0.722 s in the base
case.

As expected, the EMW propagation speeds up as the
ratio of renewables increases. While the prediction formula
is the same as for the 1-D system, namely, the speed
is inversely proportional to the square root of the SG
inertia, the propagation speed in the ρ = 0.75 scenario is
faster than twice that of the original case. The observation
reflects the complexity of predicting the propagation speed
in a 2-D system.

Fig. 25. 2-D system layout around Bus (1, 1) and WTG placement.

Fig. 26. Frequency wave propagation without (top) and with

(bottom) active power flow control.

VIII. D I S T U R B A N C E AT T E N U AT I O N
I N 2-D S Y S T E M S
This section demonstrates the efficacy of the flow control
discussed in Section V to the attenuation of disturbance
propagation in the 2-D network in Fig. 18. The base system
is assumed to have SGs on each bus. The power system
is dispatched so as to transfer 100 MW from Bus (1, 1)
to Bus (10, 10). In addition, a 50-MW load is connected
to Bus (1, 1), which is disconnected at t = 0 s. For the
same event, we replace five SG units on Buses (1, 2),
(1, 3), (2, 1), (2, 2), and (3, 1) with WTGs of the same
rating. The WTGs are dispatched to output 80 MW, which
are consumed locally by constant-power loads. The buses
hosting WTGs are denoted by solid dots in Fig. 25. Each
WTG is controlling the incoming active power flows (the
sum of them if more than one) as indicated by the arrows.

The SG speeds across the system are shown in Fig. 26.
The top figure corresponds to the base case of no convert-

Fig. 27. Wind turbine active power outputs.
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ers and the bottom corresponds to five WTGs employing
the active line flow power control. In the base case, the
propagation time is 0.61 s, whereas with the integration
of the line flow control, the propagation of the disturbance
virtually stops at the buses of the WTGs, as no oscillations
are visible on rotor speeds of the machines across the
system. The active power response of the WTG plants can
be noted in Fig. 27. WTGs (1, 2) and (2, 1) immediately
adjust their output to accommodate the excess 0.25-pu
flow on the transmission lines due to the load trip. In the
meantime, they counter the active power deviations by
effectively containing the oscillation on the tie line. Thus,
the next tie lines have significantly less oscillations such
that the disturbance is not visible three buses away.

IX. C O N C L U S I O N
High penetration of converter-interfaced renewables will
reshape the swing dynamics in future power systems. As
demonstrated in the uniform 1-D and 2-D systems, GFL
converters that replace part of the SG capacity will speed
up the EMW propagation due to the reduced inertia,
following the proposed prediction formula. GFL converters
controlled as VSGs with inertia emulation can slow down
the EMW propagation, but converter response needs to
be increased to restore the propagation speed. Converters
with fast active power control can mitigate the EMW prop-
agation or even block it when assisted with reactive power
damping control, which is highly effective as demonstrated
in both 1-D and 2-D systems. Therefore, even as the con-
verters speed up the propagation of EMW, advanced con-
trols show promise in restoring the propagation speed.
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APPENDIX
A. Derivation of the EMW Equation
for the 2-D System

Consider the dynamics of the generator on Bus (i, j).
After neglecting the damping effect, the rotor angle δi,j

follows:

δ̇i,j = Ω(ωi,j − ωn)

where ωn is the nominal angular speed. Taking its partial
derivative with respect to time yields

δ̈i,j = Ωω̇i,j ⇒ ω̇i,j =
δ̈i,j

Ω
. (A.1)

The motion of the synchronous machine (i, j) is deter-
mined by

Mω̇i,j = Pm,i,j − Pe,i,j (A.2)

where Pm,i,j is the constant mechanical power input and
Pe,i,j is the electrical power output. Combine (A.1) and
(A.2) to obtain

M

Ω
δ̈i,j = −Pe,i,j . (A.3)

For an interior Bus (i, j), the outgoing electrical power
has two directions: P(i,j),(i+1,j) and P(i,j),(i,j+1). Simi-
larly, the incoming power are P(i−1,j),(i,j) and P(i,j−1),(i,j).
Therefore, the power provided by the generator is given by

Pe,i,j =
�
P(i,j),(i+1,j) − P(i−1,j),(i,j)

�
+
�
P(i,j),(i,j+1) − P(i,j−1),(i,j)

�
(A.4)

which is the power balance equation at Bus (i, j), an
alternative to the current balance equation used in [3].
Apply the dc power flow equation to (A.4) to obtain

P(i,j),(i+1,j) = (δi,j − δi+1,j)/X

P(i−1,j),(i,j) = (δi−1,j − δi,j)/X

P(i,j),(i,j+1) = (δi,j − δi,j+1)/X

P(i,j−1),(i,j) = (δi,j−1 − δi,j)/X (A.5)

where X is the reactance between two adjacent buses.
Substituting (A.5) into (A.4) yields

XPe,i,j = (δi,j − δi+1,j) − (δi−1,j − δi,j)

+(δi,j − δi,j+1) − (δi,j−1 − δi,j). (A.6)

For an infinitesimal change Δx in the first dimension

∂δ

∂x

����
i,j

≈ (δi+Δx,j − δi,j)/Δx. (A.7)

Let Δx = l, which is the length between two neighboring
generators. The subscript i + Δx becomes i + 1 and

(δi+1,j − δi,j) ≈ l
∂δ

∂x

����
i,j

. (A.8)

Likewise,

(δi,j − δi−1,j) ≈ l
∂δ

∂x

����
(i−1),j

. (A.9)

Repeat the approximation for the remaining two terms in
(A.6), and one can obtain

Pe,i,j = −k

�
∂δ

∂x

����
i,j

− ∂δ

∂x

����
(i−1),j

+
∂δ

∂y

����
i,j

− ∂δ

∂y

����
i,(j−1)

�
(A.10)

where k = (dX/d�)−1.
Apply finite differences to obtain the approximations of

∂2δ/∂x2 and ∂2δ/∂y2 as

∂2δ

∂x2

����
i−1,j

≈
�

∂δ

∂x

����
i−1+Δx,j

− ∂δ

∂x

����
i−1,j

�
/Δx (A.11)
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∂2δ

∂y2

����
i,j−1

≈
�

∂δ

∂y

����
i,j−1+Δy

− ∂δ

∂y

����
i,j−1

�
/Δy. (A.12)

In (A.11) and (A.12), let Δx = Δy = l. The subscripts
i − 1 + Δx and j − 1 + Δy become i and j, respectively.
Substitute (15) and (16) into (14) to obtain

Pe,i,j ≈ −kl

�
∂2δ

∂x2

����
i−1,j

+
∂2δ

∂y2

����
i,j−1

�
. (A.13)

Assume that ∂2δ/∂x2 and ∂2δ/∂y2 are sufficiently
smooth, and (A.13) can become an equality for point
i� ∈ (i − 1, i) and j� ∈ (j − 1, j)

Pe,i,j = −kl

�
∂2δ

∂x2

����
i′,j

+
∂2δ

∂y2

����
i,j′

�
. (A.14)

For i� and j� in close proximity to i and j, respectively,
(A.14) and (A.3) can be combined to obtain

M

Ω
δ̈i,j = Pe,i,j = kl

�
∂2δ

∂x2

����
i,j

+
∂2δ

∂y2

����
i,j

�
. (A.15)

Take the partial derivative of (A.15) with respect to l

and rewrite it in compact notation to obtain the membrane
equation

δ̈ = c2 (δxx + δyy) (A.16)

where c2 = kΩ/m, m = dM/d�, and k = (dX/d�)−1.
If all the quantities are in per unit on the same base, it
can be observed from (A.16) that c has a dimension of
pu-length/s.

B. Analytical Solutions for the 2-D EMW Equation

1) Separation of Variables: To solve (A.16), one can
employ the standard separation of variables technique to
obtain the Helmholtz equation. Assume that δ(x, y, t) is
separable in space and time such that

δ(x, y, t) = F (x, y)G(t). (A.17)

Substitute (A.17) into (A.15) and rearrange to obtain

G̈

c2G
=

1

F
(Fxx + Fyy). (A.18)

Since there is no variable coupling, the two sides have
to be equal to a constant, say, −v2

G̈

c2G
= −v2,

1

F
(Fxx + Fyy) = −v2. (A.19)

The first part of (A.19) can be written as

G̈ + λ2G = 0 (A.20)

where λ = cv, which is a linear ODE for an undamped
oscillator. The second part

Fxx + Fyy + v2F = 0 (A.21)

is a 2-D eigenvalue problem when combined with the
boundary conditions. This 2-D Helmholtz equation can be
solved with a further separation of variables as

F (x, y) = H(x)Q(y) (A.22)

where

Hxx + k2H = 0, Qyy + p2Q = 0 (A.23)

and p2 = v2 − k2.
The separation of spatial and temporal variables allows

the boundary conditions and initial conditions to be
applied separately.

2) Boundary Conditions: The solutions to the Helmholtz
equation in (A.23) take the form of

H(x) =A cos(kx) + B sin(kx)

Q(y) =C cos(py) + D sin(py), k, p ∈ N. (A.24)

The boundary conditions are derived in a way anal-
ogous to the wave problems with free boundaries. The
mechanical wave of rotor angles will stop propagating
once it reaches the edges, which means that the variation
of rotor angles with respect to an infinitesimal change in
displacement, in the wave direction, is zero at the edges.
Without loss of generality, let a and b denote the length
along the x-axis and y-axis, respectively, the boundary
conditions can be written as in (17).

To obtain nontrivial solutions, namely, H(x) �= 0,
Q(y) �= 0, and G(t) �= 0, the boundary conditions are
simplified into

Hx(0) = Hx(a) = Qy(0) = Qy(b) = 0. (A.25)

Since

Hx = −kA sin(kx) + kB cos(kx)

Qy = −pC sin(py) + pD cos(py) (A.26)

the boundary conditions (A.25) yields

B = D = 0, k =
mπ

a
, p =

nπ

b
. (A.27)
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Denoting

Hm(x) = A cos

mπ

a
x
�

, Qn(y) = C cos

nπ

b
y
�

(A.28)

the (m,n) term of the solution to the Helmholtz equation
is

Fm,n(x, y) = Hm(x)Qn(y)

= Γ × cos

mπ

L
x
�

cos

nπ

L
y
�

, m, n ∈ N

(A.29)

where Γ = AC. Expression (A.29) is a family of solutions
that satisfy the boundary conditions. Substitute (A.29) into
the original Helmholtz equation (A.21) and compare the
coefficients to obtain

v2 =

mπ

a

�2

+

nπ

b

�2

(A.30)

which is the condition required for (A.29) to be the solu-
tions for (A.21).

3) Initial Conditions: Since p2 = v2 − k2, the eigenvalue
λ of (A.20) is given by λ = cv = c(p2 + k2)1/2.

Given that k = mπ/a and p = nπ/b, introduce the
indices m and n for λ to obtain

λm,n = cπ

�
n

b

�2

+

m

a

�2
1/2

, m, n ∈ N (A.31)

where λm,n are the eigenvalues of the system (A.20).
Thus, the general solution to G(t) is

Gm,n(t) = Bm,n cos(λm,nt) + B�
mn sin(λm,nt) (A.32)

where Bm,n and B�
mn are determined by the boundary

conditions.

4) Complete Solution: The solution for the (m,n) terms
becomes

δm,n(x, y, t)

= Fm,n(x, y)Gm,n(t)

= Γcos

mπ

a
x
�

cos

nπ

b
y
�

× �
Bm,n cos(λm,nt) + B�

mn sin(λm,nt)
�
, m, n ∈ N.

(A.33)

The complete solution is a summation over the δm,n

term

δ(x, y, t) =

∞	
m=1

∞	
n=1

δm,n(x, y, t). (A.34)

Fig. 28. Outer loop reference generators for GFL converters. Left:

frequency control loop. Right: voltage control loop.

At t = 0, it should be equal to f(x, y), and the initial
rotor angle displacements

δ(x, y, 0) =
∞	

m=1

∞	
n=1

ΓBm,n cos

mπ

a
x
�

cos

nπ

b
y
�

= f(x, y). (A.35)

To observe the EMW propagation in a system perturbed
from steady state, all rotor angles can be assumed to be
zero initially, i.e., f(x, y) = 0. Therefore,

Bm,n = 0. (A.36)

At t = 0, generators’ rotor angles can have an initial
velocity to model the disturbance. Without loss of gener-
ality, the initial velocity is modeled by g(x, y). The initial
condition is thus

δt(x, y, 0) = g(x, y). (A.37)

Since, for m, n ∈ N,

δt(x, y, 0) = g(x, y)

=

∞	
m=1

∞	
n=1

(ΓB�
m,nλm,n) cos


mπ

a
x
�

cos

nπ

b
y
�

.

(A.38)

Denote

Km(y) =
∞	

n=1

(ΓB�
m,nλm,n) cos


nπ

b
y
�

(A.39)

which acts as the coefficients for the Fourier series of
g(x, y), namely,

Km(y) =
2

a

� a

0

f(x, y) cos

nπ

a
x
�

dx. (A.40)

Fig. 29. Outer loop for VSG control in GFL converters.
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The parameter ΓB�
m,nλm,n in the coefficients of the Fourier

series of Km,n(y) is being recursively determined as

B�
m,n =

2

Γb

� b

0

Km(y) cos

nπ

b
y
�

dy

=
4

abλm,nΓ

� b

0

� a

0

f(x, y) cos

nπ

a
x
�

× cos

nπ

b
y
�

dxdy. (A.41)

Including the boundary and initial conditions, the com-
plete solution is

δ(x, y, t)=
∞	

m=1

∞	
n=1

ΓB�
m,n cos


mπ

a
x
�

cos

nπ

b
y
�

sin (λm,n)

(A.42)
for m, n ∈ N, t ≥ 0, where λm,n = cπ[(n

/
b)2 + (m/a)2]1/2.

The main observation from (A.42) is that as the order m

or n increases, the amplitude decreases due to λm,n in the
denominator.

C. Calculation of EI Model Equivalent
Impedance and Inertia

This appendix extends the derivation in [2] for WECC
equivalent parameters to those for EI. The total inertia in
the CURENT EI model is 28 250 pu (on 100-MVA base)

and is distributed evenly to 100 generators, that is, the
equivalent inertia H at each node is 282.50 s. Based on the
impedance between Florida and Tennessee, the impedance
between Florida and Manitoba is scaled to

XFL, MB =
XFL, TN

lFL, TN
lFL, MB =

0.03

606
× 2893 = 0.143 pu (A.43)

where l is the distance in miles. The impedance between
Manitoba and Florida is considered as the impedance
across the diagonal of the 2-D system. Therefore, the
impedance per branch in a 10 × 10 grid is

X =
0.143

9
√

2
= 0.011 pu. (A.44)

These H and X values are used in the 2-D system for the
simulation of the Florida event in Section VII-B.

D. Reference Generators for GFL and
GFM Converters

The outer loop reference generator for frequency and
voltage controls in GFL converters is shown in Fig. 28.
The outer loop controller for inertia emulation and power
droop in GFM converters is shown in Fig. 29.
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