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Abstract—Geomagnetically-induced current (GIC) due to space
weather can flow in the power grid causing undesirable effects
such as transformer overheating, misoperation of protection de-
vices, and potential blackouts. It is therefore important to monitor
GIC in the power grid to improve online situational awareness
and decision-making of system operators during a geomagnetic
disturbance. To avoid the costly installation of GIC monitors at
transformers’ neutrals, it is desirable to find correlations between
GIC and already-monitored parameters. Hence, this work pro-
posed the use of a convolutional neural network (CNN) to compute
GIC amplitudes from learned patterns in the time-series data of
transformer even harmonic currents. Using an electromagnetic
transient program, GIC injection simulations were performed for a
modeled Dominion Energy Virginia (DEV) substation with two 504
MVA, 500/230 kV transformers. Data collected from these offline
simulations were used to train the CNN to provide online GIC
monitoring. Testing the CNN performance involved using real GIC
measurements from published literature and from a physical GIC
monitor in the DEV area. The results showed that the proposed
method was able to provide GIC readings with a root mean squared
error of 1.56 A/phase (equivalent to an average accuracy of 94%)
for these real GIC waveforms.

Index Terms—Geomagnetically-induced current, geomagnetic
disturbance, harmonics, machine learning, neural networks, power
systems monitoring, reactive power consumption.

I. INTRODUCTION

LARGE expulsion of plasma and radiation from the sun
in the form of coronal mass ejections and solar wind can
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cause geomagnetic disturbances (GMD) on the planet. GMD can
induce geoelectric field on man-made conductors at the Earth’s
surface, e.g., communication lines [1], oil and gas pipelines [2],
and electricity transmission lines [3]. The grounding of transmis-
sion lines by their connection with wye-connected transformers
permits quasi-DC geomagnetically-induced current (GIC) to
flow in the power grid. The principal source of GIC-related
issues on the power grid is at the transformers, where GIC
causes half-cycle saturation [4], which subsequently leads to
transformer hotspot-heating, a significant increase in reactive
power consumption, and generation of even and odd harmonics.
The potential consequences of these GIC effects include per-
manent transformer damage, abnormal voltage levels, misop-
eration of protection devices, generator overheating, etc. [5],
[6]. Combinations of these consequences have led to infamous
events such as the system collapse of the Hydro Quebec system
in Canada where 6 million people lost electricity for 9 hours
[7]; and the blackout in Malmo, Sweden which put 50 thousand
people in darkness for 1 hour [8]. GIC-related events have also
been reported in the USA [9], South Africa [10], and New
Zealand [11], among others. Apart from solar activities, GIC
flow can also be caused by high-altitude nuclear electromagnetic
pulse if a nuclear bomb is detonated at altitudes higher than
30 km above the earth’s surface. Unsurprisingly, academia and
industry have been seeking improved methods to monitor GIC in
the grid so as to aid situational awareness during a GMD event.
Enhanced situational awareness will enable system operators
to make better decisions for the mitigation of GMD impacts;
such decisions may include derating transformers with high
GIC, switching on fans/pumps to improve transformer cooling,
activation of controllable neutral switching devices, controlled
load shedding, etc. Reliable GIC monitoring can also facilitate
automatic activation of neutral blocking devices to speedily
block GIC during GMD events while allowing grounding pro-
tection during normal system operation [6], [12].

GIC monitoring methods can be broadly divided into
measurement-based, model-based, and effects-based techniques
[6]. The first involves the direct measurement of GIC at trans-
former neutrals typically with Hall effect current transduc-
ers [13]. These devices are highly accurate with low error
up to ±0.6% [14], but they require physical installations at
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substations. Numerous deployments of these devices can lead to
significant financial burdens on utilities in terms of purchasing,
logistics, and labor costs, hence, installations remain limited to
a few critical substations. On the other hand, the model-based
methods involve geophysical modeling of the transmission grid
to calculate effective GIC flow in lines and transformers [15].
These are analytical methods suitable for system-level monitor-
ing, but their simplicity and accuracies depend on underlying
assumptions in the modeling. For example, the assumption of
uniform geoelectric field and Earth’s conductivity simplifies
the model and reduces its input requirement at the expense of
lower accuracy [16], [17]. In contrast, consideration of non-
uniformities improves accuracy but requires more complicated
modeling and spatially granular data which are not always avail-
able [15]. The model-based methods can also integrate available
GIC measurements to improve performance [15], [17], but will
suffer the same limitations as the measurement-based method.

Effects-based methods attempt to quantify transformer GIC
based on its correlation with the half-cycle saturation effects that
it causes. These effects can be thermal (e.g., hotspot heating),
mechanical (e.g., vibration), or electrical (e.g., harmonics and
reactive power consumption). Among these, the electrical effects
are the most frequently used because they are easy to simulate
and can be quickly computed online from normally measured
system parameters [18], [19]. The effects-based methods are
potentially the easiest to deploy since they do not require the
installation of new devices or the collection of often unavailable
data. However, low-magnitude GIC detection is often difficult
or impossible using this class of methods. The authors in [19]
developed an effects-based monitor which exploited the linear
relationship between GIC and the 2nd harmonic magnitude in
transformer magnetizing current. The study reported that only
GIC above 6.4 A/phase for a 280 MVA transformer could be
detected; larger GIC amplitudes may be undetectable for a
larger transformer. The lack of consideration for the transient,
non-linear relationship between harmonics and GICs also lim-
ited GIC detection speed. An effects-based monitor proposed
in [20] used wavelet transforms and machine learning (ML)
classification to detect GIC from harmonics (up to the 50th order)
in the secondary winding of a current transformer. This method
involved complicated feature extraction and was not tested on
real GIC signals. Moreover, the use of the ML algorithm as a
classifier limited the practical resolution of the detected GIC
amplitude.

A major challenge of the effects-based methods lies in the
non-obvious instantaneous correlation between GIC and its
effects, especially for low GIC amplitudes. Fig. 1 presents an ex-
ample of a low-magnitude GIC signal injected into a transformer
neutral. The resulting reactive power loss (ΔQ) and harmonic
current do not peak at the same time as the injected GIC signal.
This is mainly because transformer saturation is a function of
the integral of the DC voltage at the terminal of the transformer’s
magnetic circuit, rather than a function of the instantaneous
GIC amplitude [4], [21]. It is therefore difficult to capture the
dependencies between GIC and its effects without using some
time-series data.

Fig. 1. Harmonics and Reactive power consumption due to GIC in transformer
neutral.

Hence, this work developed an effects-based GIC monitoring
method using a convolutional neural network (CNN) to recog-
nize patterns in the time-series data of the harmonics generated
due to GIC flow. CNNs are especially suitable for multivariate
time-series data because it allows for multi-dimensional input
shape. The convolution operation can be intuitively understood
as a sliding window over the time series data of different input
parameters. This allows the algorithm to automatically capture
temporal changes in its inputs that are associated with specific
outputs during training. CNNs are widely used for time-series
problems due to their robustness and smaller amount of training
time compared to more complex architectures like recurrent
neural networks [22]–[24]. The use of CNN for online GIC mon-
itoring in this work leverages offline electromagnetic transient
with DC analysis (EMTDC) simulations which provide training
and testing data for the CNN.

The rest of this paper is organized as follows. Section II high-
lights the offline simulations and feature extraction performed
to create the dataset for the CNN training and testing. Section III
elucidates the construction of the CNN along with its training.
Section IV reports the performance of the proposed method,
while conclusions are presented in Section V.

II. CREATION OF DATASET FOR CNN TRAINING AND TESTING

A. Substation Modelling in EMTDC/PSCAD

The transmission network of Dominion Energy Virginia
(DEV) modeled in ASPEN OneLiner was reduced to its
Thevenin equivalent model from the perspective of two sub-
station buses as shown in Fig. 2. Bus 1 and 2 are 500 kV and
230 kV buses respectively. They are connected by two 504 MVA
grounded wye-connected autotransformers, TX1 and TX2, both
with single-phase bank core types. TX3 is a wye-wye connected
virtual transformer that represents the network connections be-
tween the two buses external to the substation. G1 and G2 are
virtual voltage sources that represent the network’s equivalent
boundary conditions at each bus.

The substation model was recreated in EMTDC/PSCAD
using relevant data from ASPEN OneLiner such as voltage
magnitudes and angles for the generators; transformer leakage
reactances and copper losses; as well as positive and zero se-
quence impedances for the generators and transformers. The
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Fig. 2. Thevenin equivalent of Dominion Energy Virginia transmission grid
from a substation’s reference point.

TABLE I
BOUNDARY CONDITIONS AT BUS 1 AND 2 FOR SELECTED TOPOLOGIES

electromagnetic simulations in EMTDC/PSCAD are more ac-
curate than other simulation techniques for GIC effects due
to their full dynamic modeling and consideration of nonlinear
magnetization effects [25].

To represent system conditions during normal operation (N-0)
and under contingencies: N-1 and N-2, three separate models
were created in EMTDC/PSCAD. The N-1 and N-2 topologies
were created by tripping line(s) close to the substation buses
that led to the greatest reduction in the fault current at Bus
1. Table I presents the system conditions for the three topolo-
gies showing the increased impedance of G1 at N-1 and N-2
topologies which indicate the reduced grid strength during these
contingencies. Consideration of these contingency topologies
allowed the CNN to capture harmonics level variations for
different system impedances. Fault analysis was performed in
PSCAD and ASPEN OneLiner to validate the three topology
models. This involved the measurement of fault currents for
three-phase-to-ground and line-to-line faults at Bus 1 and 2. The
results showed that the absolute errors of the fault currents calcu-
lated in PSCAD were less than 1% relative to those calculated in
the ASPEN model. Furthermore, the curve-fitting optimization
method described in [26] was deployed to calculate the knee
voltage and magnetizing current for TX1 and TX2, using the
measured V-I data points of DEV’s physical transformers. Air
core reactances for the two transformers were estimated as twice
the transformer leakage reactance [27].

B. GIC Injection Simulations

GIC flow in the transformer was simulated by injecting
DC into the transformers’ neutrals from DC voltage sources
connected to them. Assuming equal GIC flow in each phase,

Fig. 3. Flattening of transformer flux time constant at higher GIC levels.

currents from the DC sources are 3 times the neutral GIC
amplitudes in A/phase; this is a typical assumption made to
simply calculations and allow one-line representation of the
power system during a GMD event [28]. Neutral GIC amplitudes
were controlled using a Proportional–Integral (PI) controller
with a proportionality gain of 3 and an integral time constant
of 0.1 s. The PI controller received its control signal from a
connected signal generator with variable frequency, duty cycle,
and magnitude. A virtual parallel RLC load was also connected
at Bus 2 to allow for variation of the transformer loading. Real
and reactive power are taken as the inputs of the virtual load
which automatically calculates the equivalent RLC values. In
practice, the appropriate load model to use will depend on the
actual load composition that is downstream of the bus.

To create a dataset for CNN training, DC injection simulations
were separately performed for the three models representing
different network topologies. For each model, two categories of
control signals were used to simulate GIC injection:

i. DC signals
ii. Square wave signals with 0.005 Hz frequency and 50%

duty cycle
Along with DC signals, square waves are used by transformer

manufacturers to calculate transformer GIC capability curves
when information about a specific GIC waveform to use is
limited [29]. These signals were similarly used in this work to
represent GIC waveforms during CNN training when the specific
trajectory of transformer GIC is unknown. The square waves’
frequency was selected as a mid-point of the typical 0.0001 –
0.1 Hz frequency range of GIC [30]. The DC control signals
were used to simulate constant-amplitude GIC of 0 A/phase; 2.5
A/phase; 5 – 50 A/phase in steps of 5 A; and 50 – 100 A/phase
in steps of 10 A. These values also serve as the maximum
amplitudes of the square wave control signals used to simulate
oscillating GIC. The increasing interval size reduced the number
of simulations performed since there is a decreasing difference
in the transient effects of GIC at higher magnitudes. This can
be seen in Fig. 3 where the time constant of transformer flux
flattens at higher GIC amplitudes. 100 A/phase was the highest
simulated GIC magnitude because the maximum expected GIC
magnitude for a 1-in-100-year worst storm scenario in the DEV
system is approximately 89 A/phase [19], [28].

Transformer loading was also varied by adjusting the active
load of the virtual load at Bus 2 from 50 to 2150 MW in steps
of 100 MW and 190 MW for simulations using DC and square
wave control signals respectively. It was assumed that many
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Fig. 4. GIC measurements collected from DEV GIC monitor (top) and published literature (bottom) to create the test dataset.

of the important dependencies between GIC and its effects
would already be “learnable” by the neural network from the
data extracted from the simulations with DC control signals.
So, a smaller number of simulations with square wave control
signals were required; this helped to reduce the total number
of simulations performed. To control transformer reactive load,
a PI controller was used to modulate the reactive power of
the virtual load until desired transformer secondary side P:Q
ratios were achieved. The desired P:Q ratios for a transformer
load were chosen to represent typical values found in DEV’s
3-year operational data of the physical transformers. Run times
for simulations with DC control signals were selected based on
the GIC levels to allow transformer parameters to reach steady
state. The run times range from 90 s for GIC amplitudes greater
than 30 A/phase to 780 s for amplitudes less than 5 A/phase.
For simulations with square wave control signals, run times
were chosen to allow the waveform to complete 3 cycles, i.e.,
600 s.

To create the test dataset, real measurements from a GIC
monitor installed at the modeled DEV substation were used
alongside other real GIC measurements published in [13]. In
total, about 15 hours’ worth of GIC measurements were col-
lected from the two sources. Their absolute values, shown in
Fig. 4, were used since GIC has the same effects whether flowing
in or out of a transformer [9]. The collected measurements
were used to create 90 GIC signals by segmenting the 15-hour
measurements into 10-minute blocks. To increase the variability
and number of the GIC signals, each 10-minute block was scaled
by a multiplier. The multiplier was calculated as the ratio of the
peak amplitude of the 10-minute block to a randomly selected
amplitude between 1 – 100 A/phase. In this way, 810 scaled GIC
signals were created from the 90 extracted signals to simulate a
variety of GIC injections for the 3 topology models. The signal
generator used for the training dataset simulations was replaced
by PSCAD’s playback module to inject the scaled GIC signals
for the test dataset simulation. Transformer loading for the test

Fig. 5. Transformer load and GIC combinations that constitute the training
(left) and testing (right) datasets.

dataset was also randomly selected within the transformer’s op-
erating range. The randomized conditions in the test dataset were
useful in evaluating the generalization capacity of the trained
CNN. Fig. 5 presents the transformer loading and peak GIC
amplitudes for the 5811 and 810 simulations that constitute the
training and testing datasets respectively. PSCAD Fast Fourier
Transform (FFT) modules were used to decompose the harmonic
components (1st – 7th order) of the primary and secondary side
currents. After each simulation, per second RMS values of
these harmonic components were saved for subsequent feature
extraction. The simulations were implemented using the Python
API for PSCAD, and simulations for each topology model were
run concurrently using three instances of PSCAD workspace on
an Intel Core i7-9700 CPU with 16 GB RAM. Total clock times
to perform the simulations for the training and testing datasets
were 95.6 and 17 hours respectively.

C. Feature Extraction

In this work, the monitored effects used to compute GIC are
the RMS values of the 2nd, 4th, and 6th harmonics in the trans-
former primary and secondary-side currents. These transformer
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Fig. 6. Trajectories of the selected current harmonics due to GIC injection.

Fig. 7. Variation of steady-state values of current harmonics with GIC mag-
nitudes, transformer loads (left), and network topologies (right).

currents are usually monitored in real-time for differential pro-
tection, so their use for the proposed method should not add
financial or logistical costs for utilities. The selected harmonic
orders were chosen because of their uniqueness to the half-cycle
saturation of transformers under DC bias conditions. Typically,
even harmonics are not found during the normal operation of
power systems, so detection of the selected harmonic orders is
a reliable indication of transformer half-cycle saturation due to
GIC [31]. Since magnitude typically reduces at higher harmonic
orders, we selected the three lower-order even harmonics for this
work. Fig. 6 shows the selected harmonics in the secondary-side
load current of transformer TX1 when a constant amplitude
GIC of 25 A/phase is injected into its neutral. Transient and
steady-state periods are clearly visible; the transient period
can range from several seconds to several minutes depending
on GIC amplitude and transformer loading [19]. Furthermore,
current harmonics due to GIC are influenced by transformer
loading and network topology especially at higher GIC ampli-
tudes as shown in Fig. 7. Thus, fast GIC detection based on
harmonic measurements requires the CNN to learn the transient
and steady-state relationships between current harmonics, GIC
magnitudes, transformer loading, and network topology.

Bearing these in mind, the features extracted from each sim-
ulation data include:
� Time-series data of transformer primary and secondary-

side current harmonics (n-HV & n-LV, where n = 2, 4, and
6) using a 45 s window.

� Neutral GIC, Igic, for the last second of each 45 s window.
� Transformer secondary-side real and reactive load, P and

Q, at the last second of each 45 s window.
� Topology index, tp, to differentiate data for each topology

model.
The features above were extracted to create the training and

testing datasets with array shapes of (1220455 × 274) and
(451169 × 274) respectively. Each sample of the arrays has 274

Fig. 8. Structure of the CNN for GIC monitoring.

values to represent conditions at a time, t. Values of the three
harmonic orders in the primary and secondary currents from
time t – 44 to t make up 270 values (45 � 3 � 2 = 270). The other
4 values are Igic, P, Q, and tp at time t. In practice, there only
needs to be a memory buffer to store the harmonic values from
time t – 44 to t – 1. The memory will be updated every second
using a first-in-first-out method as new measurements become
available.

III. CONVOLUTIONAL NEURAL NETWORK (CNN)

A. CNN Structure and Training

CNNs are classes of artificial neural networks used to pro-
cess data that have grid-like topology. Examples of such data
include time-series data interpreted as a 1-D grid of samples at
regular time intervals; and image data taken as a 2-D grid of
pixel values. A CNN typically contains multiple hidden layers
which are sparsely connected through groups of convolutional
kernels. The kernels extract patterns from the input or previous
layers through a cross-correlation operation that is similar to
convolution operation without kernel flipping [32]. Using this
operation, deeper CNN layers are able to capture and analyze
more and more input patterns towards accurate recognition of the
input. The effectiveness of CNNs is attributed to this hierarchical
structure which was inspired by the human visual cortex system.

In this work, a CNN was used to identify patterns in the
time-series data of the selected current harmonics (n-HV &
n-LV) to detect GIC and compute its magnitude. Fig. 8 presents
the structure of the CNN. To fit a single sample of n-HV and
n-LV to the input of the CNN, it is reshaped to an array of shape
(45 × 6), where each column represents the 45 s data of the se-
lected current harmonics. On the other hand, single value inputs,
P, Q, and tp, are directly passed into a 128-node fully-connected
(FC) layer that is concatenated with another FC layer.

This FC layer has 512 nodes and it receives the output of
the two convolutional layers after they have been flattened. The
kernels of the first convolutional layer have a (5 × 32) shape,
i.e., kernel size equals 5, and number of channels equals 32,
while the second convolution layer has kernels with shape of
(3 × 64). The convolution kernels perform the following oper-
ation on each of the inputs:

O (i, j) = σ

(
kn−1∑
u = 0

ks−1∑
v = 0

I (i+ u, j + v) · w (u, v) + b

)
(1)
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TABLE II
CNN PERFORMANCE OVER TEST DATA

Where, I(u, v) is the input at position u of the vth channel of
a convolutional layer; O(i, j) is the output at position i of the
jth channel in the next convolutional layer; w(u, v) are kernel
weights; b is kernel bias; σ(�) is the activation function; ks and
kn are kernel size and number of kernel channels respectively.

Hence, each convolutional layer output is the weighted sum
of ks × kn inputs from the previous layer, transformed by a
non-linear activation function. All layers in the network employ
the rectified linear units (ReLU) activation function, and their
weight initialization was performed using the Kaiming initializa-
tion (HeNormal) method. Mean absolute error loss function and
the adaptive moment estimation (Adam) optimizer were used
to train the CNN. The learning rate was initially set to 0.00005
but was adaptively programmed to reduce by 50% if training
error does not reduce over 10 training epochs. Other optimizer
parameters were left at their default values. Furthermore, 5% of
the training data was set aside to be used as validation data. The
validation data was utilized to detect overfitting during training.
So, training is automatically stopped when the CNN output error
on the validation data stops reducing over 50 epochs. Using
these training methods, the total training time for the CNN was
approximately 1 hour, 25 mins on a computer with 16 GB Tesla
P100 GPU.

IV. CNN PERFORMANCE EVALUATION

To evaluate the CNN performance for GIC monitoring, the
root mean squared error (RMSE) was used since it retains mea-
surement units and penalizes large deviations between the CNN
output and true GIC values. However, RMSE gives no insight
into the proportion of error relative to the true GIC values, e.g.,
a 3 A error is more significant for 5 A GIC amplitude than for 80
A GIC amplitude. Hence, another metric named accuracy over
non-zero GIC (ANZG) was used to provide average accuracy
relative to true GIC values while avoiding zero division issues
as shown in Eq. 2.

ANZG = 1−
∑N

s = 1

∑Ts
t

abs(Igic,true(t)−Igic(t))
Igic,true

NTs

for Igic,true > 0
(2)

Where Igic,true(t) is the true injected GIC amplitude at time,
t, for simulation, s. Ts is total simulation time equal to 600 s for
the test simulations and N is total number of simulations in the
test dataset.

A. CNN Performance Over Test Data

Table II presents the CNN performance for each topology
in the test dataset. The low RMSE (and high ANZG) of the
CNN output for real GIC signatures in the test dataset proves the

Fig. 9. ANZG for the simulations in the test dataset.

effectiveness of the proposed method for GIC monitoring. It also
shows that the CNN can sufficiently generalize over unfamiliar
transformer loading and different network topologies.

A plot of ANZG for each scenario in the test data set is shown
in Fig. 9. Generally, average accuracies are well above 80%, but
low accuracy is prevalent for GIC waveforms that have very low
maximum amplitudes, especially when the transformer is heav-
ily loaded. Low GIC amplitudes produce lower harmonic levels
and high load typically dampens harmonics, thus, this combina-
tion of effects reasonably reduces the sensitivity of CNN. Fig. 10
presents visual comparisons between the CNN output and four
1-hour blocks of the curated GIC signals at different transformer
loads and network topologies. These transformer loads are from
actual measurements data of DEV’s physical transformers. It can
be seen that the CNN’s output follows the trajectories of the GIC
signals with high fidelity. The use of CNN as a regressor in this
work allowed for higher GIC resolution compared to [20] which
involved classification of detected GIC into discrete ranges.

Moreover, the overall average accuracy of 94.1% achieved
in this work for waveforms based on real GIC measurements
is superior to the highest accuracy of 90.95% reported for the
classifier in [20]. The first plot in Fig. 10 further shows that
the CNN can detect GIC levels as low as 1 A/phase. In fact,
CNN accuracy for GIC above 1 A/phase is 96.5%, but accuracy
for GIC below 1 A/phase is 22.1%. Thus, 1 A/phase is the
lower detection threshold for the proposed method. This is less
than the lower limit of 6.4 A/phase for the linear regression
effects-based method deployed in [19] for a smaller transformer.
It is noteworthy that the risk of power transformer overheating
is insignificant for both lower detection thresholds [29]. IEEE
Standard C57.163 classifies transformers with GIC magnitudes
lower than 15 A/phase as having low GIC exposure [33]. Trans-
formers with low GIC exposure may still be subjected to vibra-
tions and accelerated winding insulation degradation that can
cause failures over the long run [34], [35], but these low exposure
effects remain insignificant below 1 A/phase. The authors did
not find any literature that suggests that GIC magnitudes below 1
A/phase can cause negative consequences for transmission-level
power transformers. Therefore, the lower detection threshold of
the proposed method is sufficient to capture any crucial GIC
effects that may occur in the bulk power system.
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Fig. 10. Comparison of CNN-based GIC monitor output with true GIC injection at the transformer neutral for different operating conditions.

Previous works that used linear regression effects-based
method provided no statistical information about the accuracy
of their linear models [19]. Hence, an attempt was made to
reenact their work by creating a linear regressor based on the
relationship between 2-LV, 2-HV, and GIC. Neither oscillating
GIC nor time-series harmonic values were considered in their
work, therefore the linear regressor was created using the final
steady-state values of the harmonics for constant magnitude
GICs in the training dataset. Eq. (3) shows the equation of the
linear regressor. Note that the coefficients in (3) are peculiar to
the simulated transformers in this work.

Igic = 1.3416 · 2HV + 1.2947 · 2LV + 2.4622 (3)

Where 2HV and 2LV are the final steady-state values of the 2nd

harmonic current induced by Igic at the transformer primary and
secondary sides.

The R2 coefficient of determination of the linear model was
0.994, showing the strong linear relationship between the model
parameters. However, when this linear model was used to com-
pute Igic(t) against 2HV(t) and 2LV(t) in the test dataset, its RMSE
and ANZG were 7.09 A/phase and 63.3% respectively. This
performance is considerably lower than the performance of the
proposed method. Moreover, to capture temporal dependencies
between GIC and harmonics, another linear model was created
using all the data available to the CNN including the time-series
data of all three harmonic orders, along with P, Q, and tp as
shown in (4).

Igic (t) = a0 + a1 · nHV (t) + . . .+ a270 · nLV (t− 44)

+ a271 · P (t) + a272 ·Q (t) + a273 · tp (4)

n = 2, 4, and 6

TABLE III
PERFORMANCE OF CNN FOR UNFAMILIAR NETWORK TOPOLOGIES

The coefficients, a1 to a273, and intercept, a0, were deter-
mined using the linear regression model in Python’s scikit
learn library. The R2 coefficient of this model was also high
at 0.932, but RMSE and ANZG over the test data were 2.71
A/phase and 58.5% respectively. This RMSE is better than the
previous linear model, but accuracy is worse. This suggests that
the performance of this model is skewed towards larger GIC
amplitudes. Nonetheless, the proposed method using a CNN
still considerably outperforms both models because it captures
both temporal and non-linear dependencies between GIC and
harmonics.

B. CNN Performance Over Unfamiliar Network Topology

Network topology influences system impedance, hence, it
affects harmonic levels due to GIC (see Fig. 7). However, it
is difficult to account for all possible network topologies in
the simulations. Therefore, this subsection evaluates the per-
formance of the CNN for unfamiliar network topologies. To
achieve this, the CNN was trained only on the training data
for one topology, then it is tested on the test data of the other
two topologies. Table III presents the best performance of the
1-topology CNNs over multiple training runs. Note that the CNN
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Fig. 11. Detection speed for different GIC amplitudes and transformer load
levels.

hyperparameters were not re-tuned for the 1-topology dataset.
So, the main inference from Table III should be the change in
performance of the 1-topology CNN when evaluated on test data
from other topologies compared to test data from its training
topology.

The performance of the 1-topology CNNs in Table III suggests
that the proposed method can still be useful to detect GIC for un-
known network topologies, albeit with less accuracy. Accuracy
drop is minimal when the CNN was trained on N-1 topology
data and tested on N-2 data and vice versa. This is because
system impedances for these two topologies are closer to each
other than they are to system impedance at N-0 topology (see
Table I). It is therefore recommended to train the CNN with
data for a few representative (or common) network topologies.
Then, the CNN can provide approximate GIC readings for other
unfamiliar network topologies.

C. GIC Detection Speed

An important consideration that was not explored in previ-
ous literature on effects-based GIC monitoring is the speed of
accurate detection after GIC injection begins [19], [20]. Early
detection will allow system operators to take fast actions to
mitigate GIC impacts, and redispatch load away from affected
transformers, thereby preserving power quality and elongating
transformer fatigue life. Of course, the latency of data transfer
and data processing will delay the detection speed of any effects-
based GIC monitor. Assuming data transfer and processing times
are negligible, the detection speed was evaluated by injecting
different levels of constant magnitude GIC into the transformer
for four load levels. These load levels were approximately 10%,
40%, 70%, and 100% of the transformer nameplate capacity and
were not in the training dataset. Fig. 11 shows the detection speed
of the CNN when different GIC amplitudes (1 – 100 A/phase in
steps of 3 A) were injected at the load levels.

TABLE IV
CNN PERFORMANCE WITH AND WITHOUT ΔQgic DATA INPUT

Detection speed was generally fast when high GIC amplitudes
were injected across all load levels. However, lower GIC ampli-
tudes were slower to detect especially at larger transformer loads
where harmonic damping is typically higher. It is reasonable
that the detection speed would be dependent on GIC magnitude
and transformer loading since harmonic generation is caused by
transformer saturation, and the quickness of saturation depends
on GIC magnitude and transformer loading [36], [37]. Nev-
ertheless, it can be argued that higher GIC amplitudes where
accurate detection is generally faster are of more interest to
system operators than low GIC amplitudes, thus, the proposed
method remains useful for GIC monitoring.

D. Sensitivity Analysis: Addition of GIC-Induced Reactive
Power Consumption to CNN Input Features

Besides harmonics, ΔQ is also an important indicator of
transformer saturation due to GIC [31]. Therefore, this section
investigates potential performance improvements if time-series
data of ΔQ are added to the input features of the CNN. It is
worth mentioning that the use of ΔQ as an input may increase
the chances of false positives. This is because an increase in
ΔQ can be caused by factors besides GIC, e.g., voltage change
at either side of the transformer. Ref [18] isolated GIC-induced
ΔQ (ΔQgic) by finding the difference between measured ΔQ
and state estimated ΔQ while accounting for normal calibration
errors between the two values. However, sufficient data is not
always available to calculate a representative calibration error
between state estimation and measured values for all operating
conditions. Nevertheless, time-series data of ΔQgic was added
to the CNN input with an optimistic assumption that highly
accurate state estimation exists, or calibration error is known
with high certainty. ΔQgic(t) is calculated as the difference
between ΔQ(t) and ΔQ0 before GIC injection began.

The result of the sensitivity analysis is presented in Table IV
which shows that the addition of ΔQgic does not improve the
performance of the CNN. This is because ΔQgic has a similar
temporal relationship with GIC as harmonics (see Fig. 1), there-
fore, it does not add significant new information as an input to
the CNN. Thus, the addition of ΔQgic data to the CNN input
is not recommended considering the discussed complications
surrounding its use.

V. CONCLUSION

This work explores the use of a convolutional neural network
to provide an effects-based monitor for GIC in the neutral of a
transformer. The CNN was utilized to recognize the trajectories
of the 2nd, 4th, and 6th transformer current harmonics in order
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to quantify GIC amplitudes at a given time. Other parameters
such as transformer loading and topology information were
also provided as inputs to the CNN. After training the CNN,
it was tested against various GIC signals created by scaling
real GIC measurements from DEV and published literature. The
CNN provided readings with a root mean squared error of 1.56
A/phase (or 94% average accuracy) relative to the GIC signals
for unfamiliar transformer operating conditions. It was further
revealed that the CNN provided useful estimates of GIC when
tested on data from network topologies that it was not trained
for. The estimation accuracy however depends on the difference
in system impedance between the topologies included in the
CNN training and the ones it is tested on. Furthermore, four
transformer loading scenarios were used to show that the GIC
detection speed of the CNN is dependent on GIC magnitudes
and transformer loading. Finally, a sensitivity analysis showed
that the addition of reactive power consumption as an input does
not significantly improve the performance of the CNN for GIC
monitoring.

Like other effects-based GIC methods, the proposed method
will have to be implemented for individual substations or trans-
formers. Future work would explore the potentials of transfer
learning to reuse learned CNN weights at one substation for
other substations.
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