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Abstract—This article presents a novel approach to
physical-displacement-based power grid measuring via an
intensity-modulated fiber-optic sensor (IMFOS). An IMFOS
utilizes one fiber to transmit the intensity modulated light
from its electro-optic controller to a fiber-optic probe. The
power grid voltage and current can induce physical dis-
placements in transducers via the piezoelectric effect and
the Lorentz law, respectively, which then result in a distance
change between the optical probe and the reflective surface
of the transducers. In parallel, multiple fibers are used to
collect the reflective light for electro-optic conversion. A
National-Instruments-based characterization platform is set
up for performance evaluation. The testing result demon-
strates that the IMFOS is immune to the inherent dc and
low-frequency saturation issues prevalent in conventional
potential and current transformers. Finally, the IMFOS is
implemented in a universal grid analyzer to illustrate its
applicability for phasor estimation in actual power grids.

Index Terms—Intensity-modulated fiber optic (IMFO),
power grid measuring, universal grid analyzer (UGA).

I. INTRODUCTION

H IGH-FIDELITY monitoring devices, such as phasor mea-
surement units (PMUs), play an essential role in improv-

ing the reliability and resilience of the power grid by providing
real-time measurements of voltage and current [1]–[6]. As the
feedback from power system actuators, precise and real-time
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measurements are the solid foundations and strong supports
for power system automation applications, such as distributed
energy source controls [7], damping controls [8], power system
situational awareness [9], and event localization [10]. For in-
stance, by using the synchrophasors provided by multiple PMUs,
a damping controller can mitigate major categories of frequency
oscillations and allow more renewable electricity in power grids.

Conventional electromagnetic potential transformers (PTs)
and current transformers (CTs) are widely installed to provide
a measurement interface for grid monitoring devices. By using
both CT and PT, PMUs and the supervisory control and data
acquisition systems can provide real-time measurements to the
grid control center. Unfortunately, such magnetic-core-based
PT/CTs have inherent weaknesses, such as magnetic saturation,
electromagnetic interference (EMI) sensitivity, and poor linear-
ity, which typically become one of the bottlenecks for reliable
and accurate grid measurements [11]–[13]. For example, the dc
component under the fault conditions can cause the saturation
of transducers, which would have an adverse impact on the
protection functions of the relay and consequently on the system
stability [14]. Moreover, the conventional PT and CT require
a direct physical connection to a conductor for sensing and,
thus, are usually equipped with oil or sulfur hexafluoride gas for
insulation. Such specific requirements complicate their installa-
tion process and increase overall maintenance costs, especially
under conditions of harsh and explosive environments [15],
[16]. The electric- and magnetic-field-based noncontact sensor
was developed and tested for the synchronized measurement
of a high-voltage transmission line, which would dramatically
reduce manufacturing and installation costs [17], [18]. However,
these wireless sensors lack robustness and can produce large
harmonic distortions.

Applications of fiber-optic sensors can be a powerful tool
for the measurement of various physical parameters [19], [20].
Since fiber-optics use light rather than electricity, the fiber-optic
sensor is not sensitive to EMI and, thus, is superior in such
applications with minimal need for dielectrics. Moreover, the
optical sensors are able to address the saturation concerns
inherent in existing electromagnetic CT and PT. For the
application of power grid sensing, the most common approach
of existing optical sensors has relied on the interaction between
light and an electromagnetic field based on the Faraday and
Pockels effects, which rotates an optical probe field polarization
state in proportion to the magnetoelectric fields and measures the
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changes in light phase and polarity, in turn indicating various
electric and magnetic phenomena [17]–[26]. However, the
effects of light polarization, temperature, filtration calibration,
and birefringence drift all adversely impact the performance of
these sensors. Moreover, the specialized polarization required
by components, coupled with the calibration process, makes
the sensor design costly to manufacture.

Compared with the light polarization modulation method, the
intensity-modulated fiber-optic (IMFO) approach has merits
in its simplicity and robustness [27], [28]. Unlike the light
polarization modulation technology, the IMFO does not require
interferometry or lasers and is less susceptible to the effects
of temperature and vibration. Since IMFO is a promising
technology for physical parameter measurement, this article in-
vestigates the feasibility of exploiting this technology for power
grid voltage and current measurement, with the expectation to
overcome the inherent weaknesses in conventional transducers.
The proposed intensity-modulated fiber-optic sensor (IMFOS)
transmits 850-nm infrared light to its probes via a center fiber.
Since the power grid voltage and current can induce physical
displacements in transducers via the piezoelectric effect and
Lorentz law, respectively, a distance change between the
optical probe and the reflective surface of the transducers
will occur. Meanwhile, six fibers around the center fiber are
used to collect the reflective light, with strength dependent
directly on the displacement caused by the physical phenomena
of interest. With this in mind, a prototype of IMFOS was
fabricated for 120-V/60-Hz power grid monitoring. To evaluate
the performance of the prototype sensor, a characterization
platform based on the National Instruments (NI) PXI system is
built to conduct laboratory experiments, including steady-state
dc offset, low frequency, and dynamic tests. Finally, the IMFOS
is integrated with a GPS-time synchronized distribution level
platform, universal grid analyzer (UGA), to demonstrate its
applicability for phasor measurement. The frequency error (FE)
and total vector error (TVE) are explored in an actual distribution
level power grid. The contributions are summarized as
follows.

1) A novel physical-displacement-based power grid measur-
ing technology via an IMFOS is presented, including both
real-time voltage and current sensing. Both the working
principle and the porotype development of the IMFOS
are presented.

2) An NI-based characterization platform is set up for per-
formance evaluation.

3) To thoroughly compare with existing CTs and PTs, multi-
ple experiments are conducted to verify and evaluate the
performance of the IMFOS. The IMFOS is also imple-
mented with a PMU in real-world power systems.

The rest of this article is organized as follows. Section II
provides the principle of voltage and current probe design based
on IMFO technology. Section III presents the mechanism of
multireceiving fibers for sensitivity enhancement. Section IV
details the IMFOS prototype for distribution power grid sensing.
Section V presents the characterization test and UGA implemen-
tation to demonstrate the effectiveness of the proposed IMFOS.
Finally, Section VI concludes this article.

Fig. 1. Structure of the voltage probe in IMFOS.

II. PRINCIPAL OF THE INTENSITY-MODULATED

OPTICAL PROBE

In this section, theoretical foundations for the power grid
voltage and current sensing via IMFO technology are discussed.
The designs of voltage and current probes are given.

A. Voltage Sensing

According to the piezoelectric effect, a physical displacement
will be induced proportional to the potential difference between
the two faces of the piezoelectric material [30]. Fig. 1 shows
the structure of the voltage probe. The power grid voltage Vin is
divided via the series capacitor C and the piezoelectric trans-
ducer. The relationship between the applied voltage Vin and the
corresponding displacement Δh of the piezoelectric transducer
in height can be expressed as follows:

Δh = crVin (1)

where c is the constant piezoelectric coefficient of the piezo-
electric transducer and r is the reactance ratio between C and
the piezoelectric transducer. According to (1), in response to
the applied voltage, the piezoelectric transducer will experience
a physical displacement, consequently changing the distance
between the fiber probe and the reflective surface of the piezo-
electric material.

Fig. 1 shows the structure of the voltage probe. To measure
the distance, LED light is launched from the electro-optic (EO)
controller into a transmitting fiber and then bounced back by the
reflective surface of piezoelectric material into receiving fibers.
The light propagates via the receiving fibers and is detected by
the light-sensing end. Then, the power of the received optical
light is converted into an electric current by using a photodiode.
Finally, an EO circuit is utilized to generate the output voltage,
Vout, after filtering and amplification. Therefore, the power grid
voltage Vin, which is proportional to the displacement of the
piezoelectric material, is sensed and converted into Vout. The
parameters of the IMFOS are listed in Table I.

B. Current Sensing

To sense the current, the IMFOS uses the fiber optic to
measure the beam displacement caused by the Lorentz force
[31]. Under the Lorentz law, a force F is applied to a charged
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TABLE I
PARAMETERS OF THE IMFOS

Fig. 2. Structure of the current probe in IMFOS.

particle in a perpendicular direction to both the magnetic field
and the current, which can be expressed as follows:

F = il ×B (2)

where B is the flux dentistry, i is the current in the conductor,
and l is the length of the conductor.

As shown in Fig. 2, the power grid current Iin is split into
the shunt and the conductor a, which is placed in a gap in
the magnetic core. A force applied to the conductor a can be
expressed as follows:

Fa =
μia
2πd

Bl (3)

where ia �Iin and also satisfying ia= KcIin where Kc is the
current divider coefficient depending on shunt parameters. The
force Fa creates a displacement Δy of the conductor beam as

Δy =
5FaL

3

384EI
(4)

where 5
384 is a constant that depends on how the beam is mounted.

E is the modulus of elasticity of the material from which the
beam is fabricated, and I is the moment of inertia of the cross
section of the beam. L is the length of the beam. Substituting (3)
into (4), we can get the following:

Δy =
5μIinBlL3Kc

384EIπd
. (5)

Fig. 3. Probe of optical IMFOS.

It can be seen in (5) that the beam will experience a displace-
mentΔy, which is proportional to Iin, toward the direction of the
optical probe. Meanwhile, light is launched from the light source
into the transmitting fiber and then reflected by the reflective
surface of the conductor into the receiving fibers. The light
will propagate via the receiving fibers and be detected by the
light-sensing end. Therefore, the power grid current Iin will be
sensed in IMFOS. Then, a similar procedure as discussed in
the voltage sensor will be used to convert the receiving optical
power into output voltage, Vout. The parameters of the current
sensor are listed in Table I.

III. MULTIRECEIVING FIBERS

To increase the sensitivity of IMFOS, the multifiber structure
is utilized, comprising multiple multimode receiving fibers and
one transmitting fiber. The arrangement of the fibers is illustrated
in Fig. 3. The transmitting fiber is placed in the center of
the bundle and is then symmetrically surrounded by multiple
receiving fibers. All of the fibers are held in a tube, such that the
ends of each fiber are adjacent by a distance d to the mirror onto
transducers exhibiting physical displacement. Because the light
is bounced back in all directions on the reflective surface, as
shown in Fig. 3, the multiple receiving fiber design is beneficial
to capture more reflective light and improve the sensitivity.

In the sensitivity test, the fiber is mounted on a micrometer
translator, which can be displaced manually against a mirror
mounted on the piezoelectric transducer. The PZT-4 cylinder of
2-inch outer diameter and 3-inch length is utilized, which can
vibrate in response to the applied voltage. In the test, the probe
is manually displaced by a step of 25.4 μm using the translator.
Figs. 4 and 5 illustrate the comparison between multifibers and
single fibers with respect to dc and ac displacement sensitivity
over d, respectively. For dc displacement sensitivity, it represents
the relationship between reflected light power with the probe-
mirror distance. For ac displacement sensitivity, it represents
the relationship between signal voltage level and probe-mirror
distance. With a higher dc and ac sensitivity, a stronger reflected
light and a higher voltage of the received signal can be obtained,
which indicates an enhanced ability to detect the displacement.

According to the results shown in Fig. 4, the maximum dc
sensitivity for one fiber probe occurs at the smallest probe-mirror
distance, whereas the maximum sensitivity is achieved at a
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Fig. 4. Comparison of dc displacement sensitivity between multifiber
and one-fiber probes.

Fig. 5. Comparison of ac displacement sensitivity between multifiber
and one-fiber probes.

greater distance for the multifiber probe. Moreover, a signifi-
cantly higher light power is detected in the multifiber probe.
From Fig. 4, the maximum dc displacement sensitivity of the
multifiber probe is achieved in the region of 300–600 μm with a
significantly higher power of detected light. The largest detected
light power of a multifiber probe is 300 μW compared to 110
μW of a single-fiber probe, which indicates the coupler used in
the multifiber probe increases the detected light power by about
two times larger than that of a single-fiber probe. It can be seen
from Fig. 5 that the maximum ac displacement sensitivity of the
multifiber probe is approximately 13 dB higher than that of a
single-fiber probe. The increased sensitivity makes a multifiber
probe a better choice for applications that require high-quality
measurements.

IV. PROTOTYPE DEVELOPMENT

In this section, the prototype of the IMFOS is built for a
120-V/60-Hz distribution power grid. The systematic diagram
can be seen in Fig. 6. The maximum and minimum detectable

Fig. 6. Diagram of the IMFOS.

Fig. 7. Prototype of IMFOS. (a) Structure perspective drawing.
(b) Front panel.

voltages are 120 V and 1 V, respectively. The maximum and
minimum detectable currents are 30 A and 1 A, respectively.
The voltage specification is determined by the selection of series
capacitor C and piezoelectric transducer, whereas the current
specification is determined by the selection of the conductor. The
IMFOS consists of four major components, including a voltage
probe, a current probe, an EO controller, and an Aux Processor.
A photograph of the prototype is shown in Fig. 7. It is noted that
there is no mutual influence between the voltage and the current
probes. For the voltage channel, the physical displacement on
the piezoelectric transducer is induced in response to the applied
voltage via the piezoelectric effect. For the current channel, the
physical displacement occurs on the conductor via the Lorentz
law. These two displacements are mutually independent of each
other and will be captured via two separate optical fiber probes.

The sensor uses an LED emitting at 850-nm wavelengths as a
light source with a silicon PIN diode to sense the displacement
as discussed in Section III. The fiber probe consists of seven
identical multimode fibers with a 200-μm diameter glass core
and a 230-μm plastic cladding, with a numerical aperture of 0.37.
The transmitting fiber is surrounded by multiple receiving fibers
distributed in a fixed geometric pattern. For a voltage probe, a
bimorph transducer element constructed from PZT-4 piezoce-
ramic (Navy Type I) with nominal dimensions of 12 × 1.5 ×
0.5 mm3 is utilized [32]. It is noted that this kind of piezo-
electric material has a cantilever resonance frequency of around
1.5 kHz. Actually, a variety of geometries can be leveraged with
dimension selection beforehand to realize a predefined reso-
nance frequency considering the tradeoff between sensitivity
and bandwidth. For the current probe, a copper bus bar with
a shunt is used as a conductor to pass and divide the current.
Voltage drop is taken from the bus bar via its resistive divider
for measurement.
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Fig. 8. GUI of the application in the AUX processor. (a) Spectrum of
the measured signal. (b) System configuration.

As shown in Fig. 4, the reflected optical power increases
with the displacement distance until 500 μm and gradually
decreases thereafter. Thus, the quiescent operation point is set at
280 μm with the highest-slope region of the optical response. A
photodiode converts the received optical signal into an electric
signal in its EO controller. The IMFOS can provide both analog
and digital outputs that are converted from the optical signal.
The analog output is in the range of 0–5 V. On the other hand,
the digital output can be accessed via the network interface. The
sampling rate can be adjusted from 50 kHz to 2 mHz. The Aux
Processor is a minicomputer with a CentOS7 operating system
and an application for digital output visualization as well as the
configuration of the IMFOS. Moreover, it will also write the
digital output to local files in different data formats, including
TDMS, LPCM, and MATLAB. The graphical user interface
(GUI) of the application in the Aux Processor can be seen in
Fig. 8.

V. PERFORMANCE EVALUATION

In this section, the performance of the IMFOS is evaluated
via the sensor characterization platform and UGA. The diagram
of the sensor characterization platform is shown in Fig. 9. The
platform is built using the NI PXI system, which includes an
18-slot PXIe-1085 chassis, an Intel Core i7 embedded controller
PXIe-8135, a 40-MHz arbitrary waveform generator PXIe 5423,
and a PXIe 6366 with 8 channels of 16-b analog-to-digital
converter (ADC). The predefined reference signal is created in

a PXIe-8135 and then sent to a PXIe 5423 for digital-to-analog
(DA) conversion. The output analog signal of the PXIe 5423
is then fed into the voltage or current amplifier for sensor
characterization. The Trek PZD 700A and AETECHRON 7228
are utilized as the voltage and current amplifiers, respectively.
The output waveforms of amplifiers and sensors under test are
simultaneously recorded via PXIe 6366 with a 50-kHz sampling
rate. As illustrated in Fig. 9, since the PXIe-5423, amplifiers,
and IMFOS support bayonet neill–concelman (BNC) ports, the
voltage and current signals are sent by BNC cables from the
PXIe-5423 to the amplifier and then to the IMFOS. The output
signals from IMFOS are converted to general-purpose signal
cables and then received by the PXIe-6366.

A. Steady-State Test

In the steady-state test, the steady sinusoidal signal is gen-
erated in the NI PXIe 5423 and then fed into the voltage and
current amplifiers. The amplitude and frequency responses of
the IMFOS are tested, and the results are shown in Fig. 10. For
the amplitude response as shown in Fig. 10(a), by analyzing the
amplitude response result, the coefficient of determination R2 of
the linear regression can be calculated as follows:

R2 = 1 −
∑

i (Vi − fi)
2

∑
i

(
Vi − V̄

)2 (6)

where Vi and fi are the voltage-fitted values at index i. V̄
is the mean of voltage measurements. In the best case, the
voltage values match the fitted values so that R2 is equal to 1.
R2 of the current measurement can be calculated in a similar
method. As illustrated in Fig. 10(a), R2 is larger than 0.99,
which demonstrates the high linearity of the IMFOS. For the
frequency response, it is discovered that the IMFOS has a
flat region from 10 to 1000 Hz, as illustrated in Fig. 10(b).
The overall spectral characteristic of the prototype is impacted
by various factors, including piezoelectric/conductor material,
low-pass filter in its EO controller, transmitting fiber, and fiber
mounting strategy. The effective frequency response range can
be defined as the frequencies with amplitudes above the flat
region, i.e., 10–3000 Hz. The narrow frequency range is one
disadvantage of the proposed sensor. To improve it, one potential
solution is to apply an effective filter to filter out the resonant
region of the transducer.

B. DC Offset and Low-Frequency Tests

The dc offset and low-frequency tests are conducted by com-
paring the magnetic CT and PT since the magnetic core trans-
ducer is susceptible to dc and low-frequency injection. In this
section, the Agilent 6812B and Omicron CMC256 are used to
produce voltage and current signals, respectively. First, a 60-Hz
sinusoidal waveform superposed with a 20% dc component is
generated. From the results presented in Figs. 11 and 12, the
saturation effect caused by the dc component can be observed in
the output of the magnetic transducer while no negative impact
is found for the IMFOS, which demonstrates dc immunity in
IMFOS. From Figs. 11(b) and 12(b), the magnetic PT and
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Fig. 9. Diagram of the NI-based sensor characterization platform.

Fig. 10. Result of the steady-state test (a). Amplitude response (b).
Frequency response.

CT have severe second- and third-harmonic distortions, which
make their output unreliable under this circumstance. Thus,
the IMFOS outperforms the magnetic-based sensor when the
input signal has a dc offset, which could be caused by various
factors, such as geomagnetic disturbance, transient grounding
fault, or electromagnetic pulse-E3 (EMTP3) [12], [29]. Fig. 13
shows the results of the low-frequency test. A 14.5-Hz sinusoidal
frequency component is injected into the sensors under test.
Similarly, a severe distortion can be seen for magnetic PT and
CT, whereas the saturation effect is successfully eliminated in
IMFOS, indicating that the low-frequency signal can be accu-
rately measured by utilizing optic-electric technology. To have
a quantitative comparison among the IMFOS, PT, and CT, the

Fig. 11. Voltage test with dc component. (a) Time-domain waveform.
(b) Harmonic and interharmonic components.

voltage and current errors under three test cases are listed in
Table II. It can be clearly observed that the voltage errors of the
IMFOS are as low as those of the PT under both dc offset and
low-frequency tests. However, the current errors of the IMFOS
are much lower than those of CTs under two test cases. These
results indicate that the voltage measurement accuracy of the
IMFOS is as good as PTs, whereas the current measurement
accuracy is better than CTs under dc offset and low-frequency
test cases.

C. Dynamic Test

The aim of the dynamic test is to assess the capability of the
IMFOS for capturing the dynamic behavior of the input signal.
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Fig. 12. Current test with dc component. (a) Time-domain waveform.
(b) Harmonic and interharmonic.

TABLE II
COMPARISON AMONG IMFOS, PT, AND CT

Step change and ramp for the amplitude and frequency are tested
referring to the IEEE C37.118 standard [33]. For the frequency
step change test, the frequency of the input signal jumps up from
60 to 61 Hz, stays at 61 Hz for 2 s, and then jumps back down to
60 Hz. For the frequency ramp test, the frequency of the input
signal first ramps up from 59.5 to 60.5 Hz in 2 s at a rate of 0.5
Hz/s, stays at 60.5 Hz for 2 s, then ramps down from 60.5 to 59.5
Hz in 2 s at a rate of −0.5 Hz/s. The amplitude dynamic tests
employ similar change characteristics as the frequency dynamic
tests. The testing results are shown in Figs. 14 and 15. The
recursive discrete Fourier transform is adopted for the frequency
calculation, and the root mean square is calculated to obtain
voltage and current amplitude. From the results, the reference
signal and output of IMFOS match well, which verifies the
ability of the IMFOS to track the dynamic behavior of signals.
Again, a quantitative analysis of the IMFOS is listed in Table II
under the dynamic test. The results show that both the voltage
and current measurements are very precise under dynamic tests.

Fig. 13. Test results with low-frequency (14.5 Hz) component. (a)
Voltage test. (b) Current test.

Fig. 14. Frequency dynamic test. (a) Voltage frequency step change.
(b) Current frequency ramp.
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Fig. 15. Amplitude dynamic test. (a) Voltage amplitude ramp. (b) Cur-
rent amplitude step change.

Fig. 16. Test setup for UGA implementation.

In addition, the average FE is 2 mHz, which is lower than the
PMU frequency measurement requirement under a frequency
ramp test listed in the IEEE C37.118.1 [33].

D. Implementation in UGA

To demonstrate the applicability of IMFOS for phasor estima-
tion in an actual power grid, the IMFOS is implemented in the
UGA platform, referred to as IMFOS-UGA, as shown in Fig. 16.
The IMFOS is connected to a distribution power grid and pro-
vides input signals to a UGA for synchronized frequency, angle,
and magnitude measurements. For the sake of comparison, a
normal UGA with accuracies of 1m Hz for the frequency, 0.05 V
for the voltage magnitude, and 0.05° for the angle is set up as a
reference. The two UGAs are time synchronized by GPS signal
throughout the test; thus, the measurements can be aligned with
the coordinated universal time (UTC) timestamp. The results
of the frequency, angle, and voltage magnitude measurements

Fig. 17. Test result for IMFOS-UGA. (a) Frequency. (b) Angle. (c)
Amplitude.

are shown in Fig. 17(a)–(c). It can be seen in Fig. 17 that the
IMFOS-UGA has the capability to synchronously capture the
trends of its frequency, angle, and amplitude over time. The
FE and TVE are as small as 2 mHz and 0.029%, which are
sufficient to comply with the 5m Hz and 1% requirement of
the IEEE PMU standard C37.118.1 [33]. It is worth mentioning
that UGA is utilized as an example platform for synchronized
power grid monitoring. Since the output analog signal of the
sensor is 0–5 V dc, it is easily integrated with any other kinds
of existing power grid measurement devices, such as PMUs and
power quality analyzers, for repeatable tests.

VI. CONCLUSION

In this article, the IMFOS was developed to monitor grid
voltage and current via the measurement of the physical dis-
placement of transducers caused by the piezoelectric effect and
the Lorentz force with the advantage of simplicity. The IMFO
light was transmitted to the transducers via a one-center fiber
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and reflected by the mirrors in the transducers. Then, multiple
multimode fibers symmetrically surrounding the center fiber
with enhanced sensitivity were exploited to collect the reflected
signal to its EO controller. A prototype was built to demonstrate
the feasibility; its performance was evaluated via an NI-based
characterization platform under conditions of both steady and
dynamic states, dc, and low-frequency interferences. Experi-
mental results demonstrated its linearity and ability to capture
dynamic changes in measured voltage and current signals. This
also verified its merit for dc and low-frequency immunity com-
pared to the conventional magnetic PT and CT, indicating that the
IMFOS would be a promising tool for electric grid monitoring.
Finally, the prototype of IMFOS was implemented on the UGA
platform to demonstrate its applicability for distribution power
grid phasor monitoring. The FE and TVE of the IMFOS-UGA
met the 5 mHz and 1% requirements outlined in the IEEE PMU
C37.118 standard.

It is noted that the major elements of the IMFOS, including
LED, fiber, conductor, piezoelectric material, and copper busbar,
are commonplace. With high-volume production in mind, the
cost of the IMFOS will no doubt be competitive with conven-
tional PT and CT. Future research will focus on noise reduction
and robustness improvement. Penitential solutions include 1)
integration of an effective filter to filter out the resonant region
and low-frequency noise, and 2) temperature compensation for
the whole EO system.
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