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A B S T R A C T

Natural disasters (e.g., hurricanes) can cause widespread power outages within distribution networks and
interrupted power supply to critical loads (e.g., grocery stores, hospitals, gas, fire, and police stations)
that provide utility services. Microgrids are localized power grids that can incorporate solar/photovoltaic
(PV) distributed generators (PV-DGs) and energy storage systems (ESSs) for stand-alone system operations
independent of the main grid, known as the island mode. This study investigates a microgrid design problem
using PV-DGs and ESSs when facing prolonged power outages in the main grid. We propose a multi-
stage stochastic program that holistically considers the techno-economics of microgrid investment and daily
operations by optimizing the reliability and resilience of the microgrid during a week-long power outage.
The model is designed from a utility perspective that includes budget constraints for investment. Due to
the large model size, we develop a nested L-shaped algorithm that solves the problem exactly and analyzes
the microgrid’s reliability across different weather scenarios in the entire decision-making horizon. Results
from a case study using real-world data show that an islanded utility-scale microgrid can effectively provide
uninterrupted power supply to a network of 5 and 10 critical loads, covering 100% and 97% of the demand
in all possible future scenarios, with potential investments of $8 million and $15 million, respectively.
1. Introduction

1.1. Background

Various US cities and towns experience annual seasons of natural
disasters, which can unfortunately lead to widespread outages within
utility power grid networks [1]. These outages have lasted hours, days,
or even weeks and left the utility’s serviced population without access
to critical loads such as grocery stores for food, hospitals for healthcare,
gas stations for travel, and police and fire stations for protection.
Microgrids serve as a subsystem of the main power grid with the ability
to operate either connected to or islanded from the grid. Microgrids can
consist of distributed generation, energy storage, demand nodes such as
the critical loads of a city or town, a point of common coupling where
the connection/disconnection of the microgrid from the main occurs,
and some form of energy management systems.

Prolonged power outages have occurred in US cities and towns
due to natural disaster occurrences. This reality has helped highlight
how damaging natural disasters can be to the main grid [2]. The
past 20 years have multiple examples of such damage. For example,
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Hurricane Sandy left over 285,000 New York residents powerless for
two weeks. Sandy also forced 300 patients to be evacuated when a
major hospital’s power, provided by a utility on the main grid, was
cut off, and the back-up generators of the hospital failed [3]. Other
hospitals across the US have experienced similar situations after a
natural disasters occurrence [4–7], with causalities witnessed in some
cases [8].

Utility-scale adoption of microgrids has been a slow process due to
several factors, including interconnection policy issues and regulatory
challenges where utilities fear that microgrids will disrupt the busi-
ness model utilities have operated under for decades [9]. However,
microgrids provide several benefits for utilities and should be viewed
as an opportunity and not a threat by utilities. In worst-case scenarios,
such as widespread, long-term power outages, microgrids can provide
reliable power supply to critical loads within a utility’s serviced net-
work [10]. With a normally functioning main grid, microgrids provide
even more benefits to utilities. During normal times, microgrids can
help reduce demand on the grid, especially during times of peak
demand. Microgrids also help improve the energy efficiency of the grid
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Fig. 1. An illustrative pipeline of the proposed multi-stage stochastic optimization model. The first stage decides the optimal numbers and locations of DGs and ESSs within the
microgrid from a strategic planning perspective. The future stages, with the consideration of operational planning, meet the demands of the critical loads by incorporating optimal
power supply plans and ESS charging/discharging options. Solutions from future stages are propagated back to the first stage iteratively to achieve an exact optimal solution.
due to the ability to locate distributed generators (DGs) closer to the
power consumer and the use of renewables helps reduce the carbon
footprint of power generation as well [11,12].

1.2. Research motivation

The rise in disaster-caused power outages has pushed the US gov-
ernment to implement federal policies that request the development of
operational, technical, and economic models, which depict the disaster-
relief power supply benefits that microgrids can provide utilities [13,
14]. In such situations, utilities typically face the brunt of public
criticism and pressure to get the damaged main grid back to normal
functionality. In the case of critical loads within a utility’s serviced
region, utility-owned microgrids can reliably provide uninterrupted
disaster relief power supply to the buildings, thus ensuring that the
public maintains access to the resources the critical loads provide.
There are growing concerns that the frequency and length of power
outages caused by weather-related disruptions to the power grid will
increase in the coming years due to climate change patterns [9,15].
The development of models that capture microgrid reliability over long-
term power outage durations can help build a case for utilities to
move towards a larger scale of microgrid adoption than is presently
witnessed [16].

Thus, in order to optimize microgrid reliability during long-term
power outages, we propose a multi-stage stochastic program that mod-
els the techno-economics of microgrid investment, operation and main-
tenance, reliability and resilience for an islanded utility-scale micro-
grid, over a week-long power outage duration. The model is developed
from a utility perspective and includes budget limitations for the micro-
grid investment costs. We use solar (photovoltaic — PV) DGs, which are
easier to install in rural and urban areas through rooftop mounting. Our
model focuses on the daytime period (6 am–6 pm), when PV generation
is possible, and assumes that the backup generators possessed by each
critical building provide the nighttime power.

Specifically, the model considers the uncertainty of daily DG power
output based on the hour and weather (cloud coverage) of each day,
and provides a holistic objective function that captures the investment,
fixed operation and maintenance, power supply efficiency, reliability
and resilience of the microgrid in terms of a minimized total cost for
the utility. This is accomplished through the optimization of the size,
location, power supply assignment, and the total number of DGs and
2

ESSs within a utility-owned microgrid. Fig. 1 depicts a pipeline of the
proposed modeling approach. In the first-stage, the model decides the
optimal numbers and locations of DGs and ESSs within the microgrid,
where the total investment cost is subject to a utility budget constraint.
Then, during the future stages, the operational planning of the micro-
grid is optimized using multiple sub-problems to meet the demands of
the critical loads. Sub-problems at stage (day) ℎ are constructed under
different weather scenarios, and are strongly linked with those at stage
ℎ+ 1, since the charging/discharging operations of ESSs directly affect
the amount of power available for future operations. Solutions from
the future stages are propagated back to the first stage as the decisions
must be made in the first stage

Considering the large scale of the multi-stage stochastic model, a
sophisticated solution algorithm is used, which analyzes the microgrid’s
reliability across all possible weather scenarios (e.g., clear, cloudy,
overcast) of a week-long outage (3279 total scenarios). The model is
also applied to a case study that contains a developed network of 5 and
10 critical load nodes. The Euclidean distance between the nodes serves
as the distance power travels for supply in this research. The model
proposed in this research extends a previously developed stochastic
model that did not include energy storage systems [17].

2. Literature review

We perform a review of past literature where the following is
highlighted: (1) utility-partnered microgrid construction for reliable
power supply post-disasters from the past decade; (2) optimization
modeling of islanded microgrids for reliable power supply of critical
loads post-disaster; and (3) recent modeling techniques for optimizing
islanded microgrid reliability.

2.1. Utility-partnered microgrid construction for power supply after natural
disaster

Over the last decade, it has become clear that maintaining public
health and safety during a natural disaster requires the efficient and
effective operation of critical loads and services, including energy,
food and water, communications, shelter, emergency response, and
transportation. Locations that prove to be vulnerable to major grid
disturbances, due to natural disasters, are turning to microgrids to
help mend similar issues [18]. As a result, there has been a surge
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in microgrid development that is utility-partnered to provide reliable
power supply in the aftermath of disaster caused outages [19]. In
2011, residents in Sendai, Japan went without power for three days
as a result of a 9.0 magnitude earthquake and tsunami. Because the
natural disasters severely impacted the main grid, utility power was
interrupted for 60% of Sendai’s loads. The Sendai microgrid, created
in tandem with a utility, provided power to the Tohuku Fukushi
University Teaching Hospital after the disaster caused outage [20]. An-
other utility-partnered microgrid development for reliable post-disaster
power supply is located at the Public Safety Headquarters (PSHQ) in
Montgomery County, Maryland. The microgrid was constructed as a
way to secure the vital public services held at the PSHQ, including the
Emergency Management and Homeland Security offices, in addition
to the police station serving a large segment of the county [21]. A
surge in wildfires and earthquakes caused a formation of a microgrid
composed of three-fire stations in Fremont, California after fire stations
found challenges with backup generators that only lasted 72 h before
being renewed. Because these PV-DGs were added to the location of
these fire stations, thus helping to form the microgrid, they furthered
the available amount of hours for disaster power supply and lessened
the vulnerability of the fire stations during power outages. This type of
microgrid highlighted the importance of providing critical loads with
the ability to island from the grid, and was essentially the debut of a US
microgrid where DGs are constructed directly at the critical load [22].

2.2. Optimizing islanded microgrids for critical load power restoration post-
disaster outages

From the research perspective, modeling approaches have been
proposed to optimize islanded microgrids for power restoration of
critical loads during disaster-caused power outages. Some of these
approaches implement multi-objective optimization with objectives for
minimizing microgrid costs and maximizing the generation capacity
of the microgrid [23], while others aim to maximize critical loads
restored (microgrid reliability) and minimize total microgrid costs [10].
Some focus on single-objective optimization and aim to minimize the
distance of population centers to critical loads by optimizing DG lo-
cation within the microgrid [11], while others only aim to maximize
the total power of restored loads [24]. An in-depth review was recently
conducted in the literature to investigate energy management optimiza-
tion approaches for islanded microgrids [25]. The authors state that
commonly-used objectives in islanded microgrid optimization aim to
optimize power generation capacity of the microgrid (maximization),
power loses from unused or excess power (minimization), total micro-
grid system costs — installation, location, operation and maintenance
costs of DGs and ESSs in the microgrid (minimization), and expected
load/demand met or restored (maximization) - also known as the mi-
crogrid’s reliability. Research investigating the mentioned objectives as
combined in one holistic objective, which coordinates techno-economic
analysis and system performance of islanded microgrids, has not been
well studied [26]. The proposed model in this research combines
these commonly-used islanded microgrid optimization objectives into
a holistic objective function that not only accounts for the total costs,
power generation capacity, and potential power losses of the microgrid,
but also captures the reliability and resilience of the microgrid, as one
minimized total cost objective for the utility.

2.3. Optimizing islanded microgrid reliability

Microgrids offer clean and secure sources of power even in the
most remote, unstable locations. However, an uninterrupted supply of
power is essential. Therefore, the reliability of a microgrid, especially
when islanded, is an important aspect. Microgrid system reliability
is a metric that assesses a microgrid’s overall ability to adequately
generate and distribute uninterrupted power to expected loads. Differ-
ent techniques are used to measure the reliability of a microgrid that
3

include CAIFI (customer average interruption frequency index), SAIDI
(system average interruption duration index), SAIFI (system average
interruption frequency index), EENS (expected energy not supplied),
and the LOLE (loss of load expectation) [27–30]. Reliability analysis
that combines SAIFI, SAIDI and CAIFI and captures both reliability
and supply-adequacy concerns of an islanded microgrid is discussed
in [31]. Reliability evaluation indexes have also been converted to
costs and minimized in other work. For example, researchers in [32]
optimize the reliability of an islanded microgrid by determining the
optimal capacities of ESSs to minimize a cost-based version of EENS.
A version of LOLE is used to measure islanded microgrid reliability
in [33], where ESS sizing is optimized in a manner where the net
profit of the microgrid is maximized. Wu and Sansavini [34] optimize
the capacities and placements of distributed energy resources within
an islanded microgrid, and model EENS as a reliability cost that is
minimized in the objective.

In the literature, the impact of the stochastic environment on micro-
grid reliability has been widely considered, with applications to power-
water distribution systems [35], or with battery swapping stations [36].
In many studies, two-stage stochastic programs are formulated to model
the stochastic effects under different scenarios. However, most studies
optimize islanded microgrid reliability over short-term to medium-term
(hours to days) power outage durations [25,35]. To the best of our
knowledge, optimization approaches for islanded microgrid reliability
over long-term outage horizons, with the effects of uncertain daily
weather (cloud coverage) on daily PV output considered, have not been
well studied. In addition, few have studied the techno-economics and
operations of an islanded microgrid combined with ESSs. The proposed
model bridges the gap by optimizing the islanded DG+ESS microgrid
dependability over a long-term outage (week-long), adopting a variant
of the EENS reliability technique.

2.4. Main contributions

This research models the techno-economics of microgrid invest-
ment, operation and maintenance, reliability, and resilience for an
islanded utility-owned microgrid over the course of a week-long power
outage by optimizing the location, sizing, power supply assignment,
and the total number of DGs and ESSs within the microgrid. The
following are the major contributions of this research. First, we propose
a multi-stage stochastic program to optimize the reliability of a DG+ESS
microgrid under stochastic weather conditions in the long term. The
model captures essential elements in microgrid operations, such as
the initial investment budget, operation and maintenance cost, power
supply efficiency, reliability and resilience. Second, we implement a so-
phisticated solution algorithm, namely the nested L-shaped algorithm,
as an exact solution approach to the multi-stage model. Specifically, the
algorithm optimizes daily DG power output and ESS charge/discharge
over a week-long (7 days) period, with uncertainties in each day’s
weather (thus 3279 day–weather scenarios in total). Third, we con-
duct numerical studies using data from the real world to validate the
proposed model. We gather data from a middle-sized city in the U.S.,
and consider up to 10 critical facilities across the city. Results are
summarized, and insights are drawn from model outputs.

3. Model formulation

The model formulation is described in this section. The formulation
combines the multi-source facility location problem described in [37]
and the location coverage problem described in [38] and [39], as
well as the assumptions. We refer to the problem as a multi-source
capacitated facility location coverage problem (MS-CFLCP) due to the
multiple sources for power supply/demand coverage within the micro-
grid, all of which have a limited capacity. The MS-CFLCP is formulated
as a multi-stage stochastic program because the storage systems contain
memory from stage to stage (day to day), and is solved using nested
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Table 1
Nomenclature.

Index Description

Sets
𝑖 Building nodes with power demand {1, 2,… , 𝑛}, where 𝑛 = 5, 10
𝑗 Building nodes that are candidate PV-DG locations {1, 2,… , 𝑚}, where 𝑚 = 5, 10
𝑤 Cloud coverage (weather) conditions (clear, cloudy and overcast) {1, 2, 3}
ℎ Stages {1, 2,… ,𝐻}, where each stage 2–8 represents a different day of the week-long outage
Variables

𝐷𝑗 =
{

1 if PV-DG is located at building/node 𝑗
0 otherwise

𝑆𝑗 =
{

1 if an ESS is located at building/node 𝑗
0 otherwise

𝑥ℎ,𝑤𝑖,𝑗 =
power amount supplied from PV-DG located at𝑗 to building/demand node 𝑖 during stage ℎ
with weather condition (cloud coverage) 𝑤, where 𝑥ℎ,𝑤𝑖,𝑗 ≥ 0 in W

𝑦ℎ,𝑤𝑖,𝑗 =
stored power amount supplied from ESS 𝑗 to building/demand node 𝑖 during stage ℎ
with weather condition (cloud coverage) 𝑤, where 𝑦ℎ,𝑤𝑖,𝑗 ≥ 0 in W

𝑙ℎ,𝑤𝑖 = amount of unmet demand for building/demand node 𝑖 during stage ℎ
with weather condition (cloud coverage) 𝑤, where 𝑙ℎ,𝑤𝑖 ≥ 0 in W

𝛾ℎ,𝑤𝑖 = amount of excess power at building/demand node 𝑖 during stage ℎ
with weather condition (cloud coverage) 𝑤, where 𝛾ℎ,𝑤𝑖 ≥ 0 in W

𝜔ℎ,𝑤𝑗 =
amount of stored power in ESS 𝑗 at the end stage ℎ
with weather condition (cloud coverage) 𝑤, where 𝜔ℎ,𝑤𝑗 ≥ 0 in W

𝜖ℎ,𝑤𝑗 =
amount of power charged to ESS 𝑗 during stage ℎ
with weather condition (cloud coverage) 𝑤, where 𝜖ℎ,𝑤𝑗 ≥ 0 in W

PV-DG
Parameters
𝑎 Minimum total of PV-DGs within the microgrid
𝐵 Utility budget for microgrid investment
𝜗 Rate of power losses
𝛿ℎ,𝑤𝑖 Demand of power at node 𝑖 during stage ℎ with weather 𝑤 (cloud coverage) in W
𝛼𝑗 Size of PV-DG 𝑗 in W
𝑜ℎ,𝑤𝑗 Output power from PV-DG at 𝑗 during stage ℎ with weather 𝑤 (cloud coverage) in W
𝜙𝑗 Operation and maintenance (O&M) costs for PV-DG at 𝑗 in $/W
𝜆𝑗 Penalty applied for excess PV-DG and ESS power at 𝑗 in $/W
𝜓𝑖 Penalty applied for not meeting the demand of power at node 𝑖 in $/W; penalty is applied based on

the importance of node
𝐼𝑗 Cost to invest in a utility-scale PV-DG at node 𝑗 in $/W
𝑑𝑖𝑗 Matrix (𝑛 × 𝑚) of distances between each location of demand node 𝑖 and PV-DG 𝑗; distances represent

cost to distribute power across each distance
Storage
Parameters
𝜂𝑗 Size of ESS 𝑗 in W
𝜁𝑗 Investment cost of a utility-scale ESS 𝑗 in $/W; investment cost includes the capital costs for energy

capacity, power conversion system costs, balance of plant costs, interconnecting transformers,
construction and commissioning costs

𝜇𝑗 Operation and maintenance O&M costs for ESS 𝑗 in $/W
𝛽𝑗 Initial stored power in ESS 𝑗 in W
𝛺𝑗 Capacity of an ESS 𝑗 in W
𝑒𝑑 Discharge efficiency of an ESS; assumed as 99%
𝑒𝑐 Charge efficiency of an ESS; assumed as 99%
Benders decomposition (also known as nested L-shaped method for
multi-stage models). The model’s nomenclature is provided in Table 1.

The model considers the microgrid’s reliability performance to meet
customer demands over every possible one of the 3279 scenarios. The
resilience of the microgrid is captured by minimizing the potential
reverse power flow in the system. Since we are modeling an islanded
microgrid, any excess power at a building will reverse its flow due to
the microgrid being disconnected from the main grid. Reverse power
flow, which is caused by excess renewable generation, has system
functionality consequences such as voltage peaks and reduced power
quality [40]. Such issues, especially when considering utility-scale
generation as we do in this research, can make the microgrid less
resilient to a system failure. Thus, the model aims to minimize the
reverse power flow within the network. The model is designed from a
utility perspective and includes budget considerations for the microgrid
investment costs. The solutions portray the total costs and reliability
of various islanded microgrid configurations based on allocated utility
budget options.
4

3.1. First-stage

Let ℎ = 1, 2,… ,𝐻 denote the stages of the MS-CFLCP, where 𝐻 ∈
N+ is the maximum horizon. Each stage ℎ represents one day of the
week-long outage and contains 12 daytime hours of power demand
for each building aggregated. PV-DGs and ESSs can be installed at
location 𝑗 ∈ 𝑀 ∶= {1, 2,… , 𝑚} to satisfy the demand at locations
𝑖 ∈ 𝑁 ∶= {1,… , 𝑛}; each building serves as a candidate to locate a
PV-DG and or ESS. We analyze a 5-building network where 𝑀 and 𝑁
both equal 5, as well as a 10-building network where 𝑀 and 𝑁 both
equal 10. Note that the model allows 𝑀 ≠ 𝑁 . Using different 𝑀 and 𝑁
only affects the power balance equations, which will be introduced in
Eqs. (12) and (13) in later sections, since the power balance equation
for a location in 𝑀 is different from that of a location in 𝑁 . To account
for the weather (cloud coverage) uncertainty in PV-DG power output,
let 𝑤 = 1, 2, 3 denote the weather (cloud coverage) condition of each
day, where 𝑤 = 1 represents a clear day with a large output of PV-DG
power, 𝑤 = 2 represents a cloudy day with low power output from PV-

DGs and 𝑤 = 3 represents a day with overcast skies and extremely low
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PV-DG power output. In the first-stage program, decisions are made for
the location PV-DGs and ESSs as described below:

min
∑

𝑗∈𝑀

(

𝐼𝑗𝛼𝑗𝐷𝑗 + 𝜁𝑗𝜂𝑗𝑆𝑗
)

+
∑

𝑗∈𝑀

(

𝜙𝑗𝛼𝑗𝐷𝑗 + 𝜇𝑗𝜂𝑗𝑆𝑗
)

+2(𝑫,𝑺,𝝎𝟏)

(1)

s.t.
∑

𝑗∈𝑀
𝐷𝑗 ≥ 𝑎; (2)

∑

𝑗∈𝑀

(

𝐼𝑗𝛼𝑗𝐷𝑗 + 𝜁𝑗𝜇𝑗𝑆𝑗
)

≤ 𝐵; (3)

𝜔1
𝑗 = 𝛽𝑗𝑆𝑗 ∀𝑗 ∈𝑀 ; (4)

𝐷𝑗 , 𝑆𝑗 ∈ {0, 1} ∀𝑗 ∈𝑀. (5)

The objective function is described in Eq. (1) and is a minimization
of the total cost for locating (investment cost) PV-DGs (𝐷𝑗𝑠) and ESSs
(𝑆𝑗𝑠), plus the total fixed O&M costs for PV-DGs and ESSs; we formulate
the two cost functions separately since we provide each cost separately
in the results. 2(𝑫,𝑺,𝝎𝟏) denotes the expected objective value of the
sub-problem stages. Eq. (2) ensures that a minimum of 𝑎 PV-DGs are
located in the microgrid; we analyze two versions of the MS-CFLCP
where we assume that 𝑎 ≥ 0 in one model and 𝑎 ≥ 1 in the second. We
include Eq. (2) for model flexibility if a utility were to desire a certain
minimum number of PV-DGs be located; this would be advantageous
for a utility servicing a region with a large percentage of clear weather
(cloud coverage) versus a utility in a region with predominantly cloudy
and overcast weather. Eq. (3) ensures the total cost to install/locate
(investment cost) PV-DGs and ESSs is within a pre-determined utility
budget 𝐵. Eq. (4) ensures that an installed ESS (𝑆𝑗 ) at location 𝑗 has
initial power 𝛽𝑗 available to use at the beginning; we assume ESSs begin
the week-long outage with 100% initial power due to them charging in
the time leading up to the main grid disturbance caused by the natural
disaster. Eq. (5) ensures that PV-DG and ESS decision variables 𝐷𝑗 and
𝑆𝑗 , respectively, are binary.

3.2. Sub-problem stages

In Eq. (1), 2(𝑫,𝑺,𝝎𝟏) is the aggregated objective of the sub-
problem stages, where in each stage, the model decides how much
power is supplied from a located PV-DG and or an ESS 𝑗 to a building
at demand node 𝑖 during stage ℎ with weather condition 𝑤 (cloud
coverage) . At stage ℎ − 1, where ℎ ≥ 2, we have

ℎ(𝑫,𝑺,𝝎𝒉−𝟏) ∶= E(𝑤)[𝑄ℎ(𝑫,𝑺,𝝎𝒉−𝟏, 𝑤)], (6)

as the expected objective value of stage ℎ, where E(𝑤) represents the
expectation for the weather (cloud coverage) parameter and

𝑄ℎ(𝑫,𝑺,𝝎𝒉−𝟏, 𝑤) ∶= min 𝑧 = (1 − 𝜗)
∑

𝑖∈𝑁

∑

𝑗∈𝑀
𝑑𝑖,𝑗 (𝑥

ℎ,𝑤
𝑖,𝑗 + 𝑦ℎ,𝑤𝑖,𝑗 )

+
∑

𝑖∈𝑁
𝜓𝑖𝑙

ℎ,𝑤
𝑖 +

∑

𝑖∈𝑁
𝜆𝑖𝛾

ℎ,𝑤
𝑖

+ ℎ+1(𝑫,𝑺,𝝎𝒉). (7)

The first term of 𝑧, 𝑑𝑖,𝑗 (𝑥
ℎ,𝑤
𝑖,𝑗 + 𝑦ℎ,𝑤𝑖,𝑗 ), computes the total cost of the

power supply based on the distance traveled to supply the power where
(1 − 𝜗) estimates the power losses witnessed during power delivery
from PV-DGs and ESSs to critical loads. Since more power is lost in
distribution and the further DGs and ESSs are from the demand sites,
this cost function aims to minimize the distance between a demand site
and its supplying DG and or ESS. It in-turn would reduce the potential
losses as power is transmitted and improves the power supply efficiency
of the microgrid. We are modeling the microgrid network as a facility
location problem network due to the use of comprehensive DG and
ESS investment costs from the model’s first-stage, which account for
the entirety of the microgrid’s development. Thus in the sub-problem
states, the Euclidean distance between a DG and or ESS and a building
demand node (𝑑 ) is used as a supply cost (similar to the links in
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𝑖,𝑗 s
a facility location problem) that represents the distance traveled for
power distribution [41]. The second item of 𝑧 computes the cost of
unmet demand, where 𝑙ℎ,𝑤𝑖 is the amount of unmet demand and 𝜓𝑖
is the unmet demand penalty coefficient. The third item computes
the cost of excess power, where 𝛾ℎ,𝑤𝑖 is the amount of excess power
penetrated and 𝜆𝑖 is the excess power penalty coefficient. The last term
of z, ℎ+1(𝑫,𝑺,𝝎𝒉) denotes the aggregated objective of the proceeding
stages of the model. The sub-problems at each stage ℎ are subject to
the following constraints:

s.t.
∑

𝑖∈𝑁
𝑥ℎ,𝑤𝑖,𝑗 ≤ 𝑜ℎ,𝑤𝑗 𝐷𝑗 ∀ 𝑗 ∈𝑀 ; (8)

∑

𝑖∈𝑁
𝑦ℎ,𝑤𝑖,𝑗 ≤ 𝑒𝑑 𝜔

ℎ−1
𝑗 ∀ 𝑗 ∈𝑀 ; (9)

𝜔ℎ,𝑤𝑗 = 𝜔ℎ−1𝑗 − 1
𝑒𝑑

∑

𝑖∈𝑁
𝑦ℎ,𝑤𝑖,𝑗 + 𝑒𝑐 𝜖

ℎ,𝑤
𝑗 ∀ 𝑗 ∈𝑀 ; (10)

𝜔ℎ,𝑤𝑗 ≤ 𝛺𝑗 𝑆𝑗 ∀ 𝑗 ∈𝑀 ; (11)

𝑜ℎ,𝑤𝑖 𝐷𝑖 +
∑

𝑗∈𝑀,𝑗≠𝑖
𝑥ℎ,𝑤𝑖,𝑗 +

∑

𝑗∈𝑀
𝑦ℎ,𝑤𝑖,𝑗

=
∑

𝑗∈𝑁,𝑗≠𝑖
𝑥ℎ,𝑤𝑗,𝑖 + (𝛿ℎ,𝑤𝑖 − 𝑙ℎ,𝑤𝑖 ) + 𝜖ℎ,𝑤𝑖 + 𝛾ℎ,𝑤𝑖 ∀ 𝑖 ∈ 𝑁 ∪𝑀 ; (12)

∑

𝑗∈𝑀,𝑗≠𝑖
𝑥ℎ,𝑤𝑖,𝑗 +

∑

𝑗∈𝑀
𝑦ℎ,𝑤𝑖,𝑗 = (𝛿ℎ,𝑤𝑖 − 𝑙ℎ,𝑤𝑖 ) + 𝛾ℎ,𝑤𝑖 ∀ 𝑖 ∈ 𝑁 ⧵𝑀 ; (13)

𝑙ℎ,𝑤𝑖 ≥ 𝛿ℎ,𝑤𝑖 −
∑

𝑗∈𝑀
(𝑥𝑤,ℎ𝑖,𝑗 + 𝑦ℎ,𝑤𝑖,𝑗 ) ∀ 𝑖 ∈ 𝑁 (14)

𝑙ℎ,𝑤𝑖 ≤ 𝛿ℎ,𝑤𝑖 ∀ 𝑖 ∈ 𝑁 (15)

𝑥ℎ,𝑤𝑖,𝑗 , 𝑦
ℎ,𝑤
𝑖,𝑗 ≥ 0 ∀ 𝑖 ∈ 𝑁, 𝑗 ∈𝑀 ; (16)

𝑙ℎ,𝑤𝑖 , 𝛾ℎ,𝑤𝑖 ≥ 0 ∀ 𝑖 ∈ 𝑁 ; (17)

𝜔ℎ,𝑤𝑗 , 𝜖ℎ,𝑤𝑗 ≥ 0 ∀ 𝑗 ∈𝑀. (18)

Eq. (8) ensures the power amount supplied from PV-DG 𝑗 to it is
ssigned critical loads 𝑖 during stage ℎ with weather condition (cloud
overage) 𝑤 (𝑥ℎ,𝑤𝑖,𝑗 ) is within the power output from the PV-DG 𝑗 during
tage ℎ with weather condition (cloud coverage) 𝑤 (𝑜ℎ,𝑤𝑗 ); this is for all
V-DGs. Eq. (9) ensures that the amount of power supplied by an ESS
t location 𝑗 is less than the power stored in the ESS at the end of stage
−1. In the constraint, 𝑒𝑑 is the discharge efficiency of an ESS. Eq. (10)

s the ESS power flow balance constraint. It ensures that the presently
tored power at stage ℎ under weather (cloud coverage) condition 𝑤
𝜔ℎ,𝑤𝑗 ) of each ESS 𝑗 must equal to the stored power available at the
nd of stage ℎ − 1 minus the stored power usage in stage ℎ, plus the
ower charged into the ESS at stage ℎ; 𝑒𝑐 is the charge efficiency of an
SS. Eq. (11) ensures that the presently stored power at stage ℎ under
eather (cloud coverage) condition 𝑤 (𝜔ℎ,𝑤𝑗 ) of an ESS 𝑗 is limited by

the storage capacity (𝛺𝑗 ) of that ESS 𝑗.
Eqs. (12) and (13) ensure the power flow balance at each node/site

𝑖. For each demand node/critical load 𝑖 that is also a potential site for
the location of a PV-DG and or ESS 𝑗, the left-hand-side of Eq. (12)
represents the power available at a site 𝑖: the power output at site 𝑖 if a
PV-DG is installed (𝑜ℎ,𝑤𝑖 𝐷𝑖) and the sum of all power supplied to site 𝑖
from PV-DGs and ESSs at other locations (𝑥ℎ,𝑤𝑖,𝑗 + 𝑦ℎ,𝑤𝑖,𝑗 ). The right-hand-
side of Eq. (12) represents the power usage at site 𝑖: the power supplied
to other sites from the installed PV-DG 𝑗 at site 𝑖 (𝑥ℎ,𝑤𝑗,𝑖 , where 𝑗 ≠ 𝑖), the
power used to satisfy the demand of the critical load at site 𝑖 (𝛿ℎ,𝑤𝑖 −𝑙ℎ,𝑤𝑖 ),
he power used to charge the ESS at site 𝑖 (𝜖ℎ,𝑤𝑖 ), and the excess power
t site 𝑖 (𝛾ℎ,𝑤𝑖 ). For each demand node/critical load site 𝑖 where PV-
Gs and ESSs are not installed, the left-hand-side of Eq. (13) represents

he sum of all power supplied to site 𝑖 from PV-DGs and ESSs at other
ocations (𝑥ℎ,𝑤𝑖,𝑗 + 𝑦ℎ,𝑤𝑖,𝑗 ). The right-hand-side of Eq. (13) represents the
ower usage at site 𝑖: the power used to satisfy the demand of the
ritical load at site 𝑖 (𝛿ℎ,𝑤𝑖 −𝑙ℎ,𝑤𝑖 ) and the excess power at site 𝑖 (𝛾ℎ,𝑤𝑖 ). For
oth Eqs. (12) and (13), the demand of the critical load (𝛿ℎ,𝑤𝑖 ) minus
he unmet demand of the building (𝑙ℎ,𝑤𝑖 ) equates to the demand met or

atisfied for the building.
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Fig. 2. MS-CFLCP model node-scenario tree diagram, where 𝑝1 = 27%, 𝑝2 = 29% and 𝑝3 = 44% represent the probability of the day experiencing clear or sunny (S), cloudy (C)
and overcast (O) weather (cloud coverage) respectively. The model has a total of 3279 scenarios of day–weather (day and weather combination) over the duration of a week-long
outage.
Eq. (14) ensures that the minimum amount of unmet demand at site
𝑖 is bound by the difference of the demand at stage ℎ under weather
(cloud coverage) 𝑤 (𝛿ℎ,𝑤𝑖 ) and the aggregated amount of power supplied
to 𝑖 from other locations (𝑥ℎ,𝑤𝑖,𝑗 +𝑦ℎ,𝑤𝑖,𝑗 ). Note that together with Eq. (12),
the model has the freedom to ‘‘sacrifice’’ part of the demand at a
location 𝑖 ∈ 𝑁 ∪ 𝑀 , so that more power can be stored into the ESS
to meet future demands. In that case, Eq. (14) will not be binding.
Eq. (15) ensures that the unmet demand at a location 𝑖 (𝑙ℎ,𝑤𝑖 ) cannot
exceed the total demand of 𝑖 (𝛿ℎ,𝑤𝑖 ). Eqs. (16), (17) and (18) ensure that
the PV-DG power supply (𝑥ℎ,𝑤𝑖,𝑗 ), ESS power supply (𝑦ℎ,𝑤𝑖,𝑗 ), unmet power
demand (𝑙ℎ,𝑤𝑖 ), excess power (𝛾ℎ,𝑤𝑖 ), presently stored power (𝜔ℎ,𝑤𝑗 ) and
power charged to an ESS (𝜖ℎ,𝑤𝑗 ) variables are continuous.

Fig. 2 displays the scenario tree diagram for the MS-CFLCP with all
stages of the multi-stage model portrayed, as well as the number of
scenarios in each stage. Each combination of day-and-weather (ℎ −𝑤)
represents a different scenario. The best-case full week-long scenario
would be a week where all 7 days experience clear weather (no cloud
coverage), while the worst-case would be a week where all 7 days
experience overcast weather (cloud coverage).

3.3. Assumptions

The following assumption are used in the modeling of the MS-CFLCP
: (1) the maximum number of PV-DGs and ESSs that can be located is
known and is based on the number of candidate locations available;
(2) candidate locations for PV-DG and ESS exist within an operational
microgrid system that is fully interconnected due to the comprehensive
DG and ESS investment costs from the model’s first-stage, which ac-
counts for the entirety of the microgrid’s development (DG investment
6

includes the modules and inverter costs, costs for balance of sys-
tem components (structural and electrical), labor costs for installation,
transmission lines and interconnection, taxes and overhead, inspection
and permitting, and land acquisition; ESS investment cost includes
the capital costs for energy capacity, power conversion system costs,
balance of plant costs, interconnecting transformers, construction and
commissioning costs); (3) the full year has an estimated 97, 107, and
161 days of clear, cloudy, and overcast weather respectively in the case
study [42]; (4) the microgrid is in island mode operation after a major
disturbance on the main grid, where all power supplied comes from the
located DGs and or ESSs; (5) ESSs begin the outage week at full charge
with the assumption that utility managers would have enough time to
charge the ESSs based on updates from local news cycles tracking a
natural disaster’s arrival in the utility’s serviced region; and (6) the
microgrid supplies power throughout the daytime period (6 am−6 pm),
while the backup generators each critical load is assumed to possess
supply power when the sun is no longer available. Python programming
language and GUROBI optimizer were used to solve the model on a
Tesla GPU server.

4. Solution methodology

The nested L-shaped algorithm is a decomposition method applied
to multi-stage stochastic problems. The algorithm decomposes the mas-
ter problem being solved into smaller sub-problems that can be solved
independently. The solutions to the decomposed sub-problems are rein-
tegrated back into the master problem to solve the overall problem.
Depicting the algorithm is primarily accomplished with the use of a
node-scenario tree diagram, where each node on the tree represents
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Fig. 3. An example of a node-scenario tree diagram. Each branch has a certain
probability of occurring..

a specific decision period and the number of nodes in each period
represents the number of possible scenarios at that period; the num-
ber of nodes in the last period of the node-scenario tree diagram is
equivalent to the total possible outcomes of the master problem [43].
Fig. 3 displays an example of multi-stage node-scenario tree, where 𝑡
represents the period (stage) and thus there are 3 stages portrayed in
Fig. 3. Period 𝑡 = 1 represents the root node, which is the overall master
problem. Each node following the root node is a leaf node of the tree
diagram. Each leaf node within a specific period 𝑡 represents a possible
scenario outcome of the period 𝑡. The four-leaf nodes in period 𝑡 = 3
(𝑘 = 1,… , 4) represent the scenarios in period 𝑡 = 3. Since period 𝑡 = 3
is the last period (stage), it means that there are four total outcomes
for the problem.

At each decision period (sub-problem), an optimization problem
is solved. Once sub-problem solutions are reintegrated back into the
root node, an optimal decision or optimal solution can be determined
for the master problem. The decision or solution at each node affects
the problem being solved at the consecutive node; this is referred to
as a recourse problem, where an initial decision is made at one time
period, time passes during which events occur, and then a new decision
(recourse decision) is made that optimizes the solution taking into
account the events that have occurred since the previous decision’s time
period [43].

4.1. Nested decomposition

The general nested L-shaped problem has a set of stages 𝑡 =
1,… ,𝐻 − 1 and a set of scenarios 𝑘 = 1,… ,𝒦 𝑡, where 𝐻 is the total
number of stages and 𝒦 𝑡 is the number of distinct scenarios at stage 𝑡.
Cuts, to stage 𝑡 − 1 and solutions for stage 𝑡 + 1 are generated from the
following master problem [44]:

min (𝑐𝑡𝑘)
𝑇 𝑥𝑡𝑘 + 𝜃

𝑡
𝑘 (19)

s.t. 𝑊 𝑡𝑥𝑡𝑘 = ℎ𝑡𝑘 − 𝑇
𝑡−1
𝑘 𝑥𝑡−1𝑎(𝑘); (20)

𝐷𝑡
𝑘,𝑗𝑥

𝑡
𝑘 ≥ 𝑑𝑡𝑘,𝑗 ; ∀𝑗 = 1,… , 𝑟𝑡𝑘; (21)

𝐸𝑡𝑘,𝑗𝑥
𝑡
𝑘 + 𝜃

𝑡
𝑘 ≥ 𝑒𝑡𝑘,𝑗 ; ∀𝑗 = 1,… , 𝑠𝑡𝑘; (22)

𝑥𝑡𝑘 ≥ 0. (23)

In the above master problem 𝑎(𝑘) represents the ancestor scenario
of 𝑘 at stage 𝑡 − 1. 𝑥𝑡−1𝑎(𝑘) represents the current solution from 𝑎(𝑘). The
problem has boundary conditions at the first-stage, 𝑡 = 1, and last stage.
The initial conditions for 𝑡 = 1, the first-stage, are 𝑏 = ℎ1 − 𝑇 0𝑥0.

𝐻
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For stage 𝐻 , the last stage, 𝜃𝑘 , constraint (21) and (22) are removed.
Each sub-problem is called a Nested L-shaped decomposition sub-
problem and is denoted as 𝑁𝐿𝐷𝑆(𝑡, 𝑘). The following section details
the implementation of the nested L-shaped method.

4.2. Implementation of nested L-shaped method in MS-CFLCP

Applying the nested L-shaped method requires knowledge of how to
move forward and backward on the tree nodes. This begins by solving
the root node in the first-stage without consideration of any constraints
from its subsequent nodes (sub-problems). The optimal solution to
the root node is then used to solve the proceeding leaf nodes of the
root node (sub-problems); this is the second-stage and feasibility and
optimality cuts for the first-stage are generated at this step.

Feasibility cuts are constraints generated and added to the first-
stage problem when a sub-problem is determined infeasible based
on the solution of the first-stage. Generally, feasibility cuts will help
make a previously infeasible sub-problem feasible and thus provide a
feasible solution to the master problem. Note that feasibility cuts cannot
guarantee an optimal master problem solution. In the MS-CFLCP, how-
ever, feasibility cuts are unnecessary since every sub-problem in stages
ℎ = 2, 3,… has complete recourse, i.e., for any solution (𝑫,𝑺,𝒘𝒉−𝟏),
the sub-problem in stage ℎ is always feasible. The feasibility of sub-
problems is primarily ensured by the model setup. In island mode, when
access to the main power grid is cut off, it would be too ambitious to as-
sume that the microgrid can support all the demand from critical loads.
The best course of action is to reduce the unmet demand (demand loss)
as much as possible, considering the importance of the loads. Thus, in
the model, power demands are modeled as costs in the objective, rather
than constraints that have to be satisfied, guaranteeing feasibility in
every sub-problems.

As such, in the MS-CFLCP, only optimality cuts are generated. Opti-
mality cuts send information back to the first-stage problem about how
to make the first-stage solution an optimal one and not just a feasible
solution [43]. Typically, optimality cuts are derived from the dual
variables of a sub-problem. Due to the complexity of the sub-problems,
we are unable to formulate the dual problem of the MS-CFLCP explic-
itly. However, thanks to modern commercial solvers such as GUROBI,
information about the dual variables is directly accessible after solving
the primal sub-problems of the MS-CFLCP so that optimality cuts can
be derived without formulating the dual problem in its closed form.

After solving the second-stage, we have two options: (1) go back-
wards to the root node problem using the cuts generated from the
second-stage problems; (2) use the optimal solutions determined for
the second-stage problems and move forwards to the third-stage to
solve the sub-problems of the third-stage without consideration of any
constraints in subsequent nodes (sub-problems); solving the third-stage
sub-problems generates cuts for the second-stage problems. The process
continues, with solutions passed down the tree from parent nodes to
children nodes while cuts are passed back up the tree from children
nodes to parent nodes, until the bottom nodes of the tree are reached
and the algorithm can only move back up the tree. The algorithm can-
not move further down any tree branch where infeasibility has occurred
at a node (sub-problem) because there would be no proposed solution
to pass to the children nodes from the parent node. The following
subsection details the sequencing protocols used to help decide which
way the algorithm moves (forward/down or backwards/up) and when,
as well as when to terminate the algorithm’s movement through the
tree [43].

4.3. Sequencing protocols

The three main sequencing protocols are fast-forward, fast-back,
and fast-forward-fast-back. Fast-forward moves forward/down the tree,
and movement forward/down is dictated by the finding of a feasible

solution at the present sub-problem/node. Each determined feasible
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solution at the sub-problem is taken to the children nodes of that sub-
problem until the leaves at the end of the tree are reached, or an
infeasible sub-problem node is reached. Fast-back moves backward/up
the tree. When an optimality cut is added at a child node, the al-
gorithm moves backward to re-solve the parent node. This process
repeats until the root node (first-stage problem) is reached and re-
solved for an optimal solution. Fast-forward-fast-back combines the
fast-forward and fast-back sequencing protocols. The algorithm moves
forward/down the tree until it can go no further and then switches to
moving backward/up the tree until the root node.

The algorithm concludes at termination. Termination is reached
when all sub-problems at all stages of the tree are feasible based on
the first-stage solution. While navigating through the tree, the algo-
rithm will terminate and find the entire problem infeasible if the root
node/first-stage solution becomes infeasible. If all sub-problems are
feasible with the current first-stage solution, and all sub-problems have
reached an optimal solution, the algorithm will terminate.

5. Tennessee case study

A case study is used to analyze the performance of the model. The
case study contains critical loads from an area in Tennessee, where each
building doubles as one of the candidate location sites for a PV-DG and
or ESS. The model uses three PV-DG system sizes of 500 kW, 1 MW, and
5 MW. All ESSs are 1 MW in size. Benchmark cost reports by NREL
state that PV-DG rooftop mounting is possible for 3 kW–2 MW sized
PV-DGs, while ground mounting is used for PV-DGs of sizes greater
than 2 MW; such large PV-DGs require land acquisition [45]. For
this study, hospitals and large-scale grocery stores serve as candidates
for the location of 5 MW PV-DG systems, police and fire stations
serve as candidates for the location of 1 MW PV-DG systems, while
gas stations serve as candidates for the location of 500 kW PV-DG
systems. We describe the PV-DG power output data and the uncertainty
experienced within power output, the cost data for the PV-DGs and
ESSs, the critical loads power demand data and the uncertainty within
the demand, the penalty for unmet demand at each building type, as
well as the 5-building and 10-building networks we use for modeling
in this section. The data used in this model is also available for viewing
and downloading in a table format at Kizito [46].

5.1. PV-DG power output

Weather effects (i.e., cloud coverage) in addition to the time-of-day
trigger natural uncertainty in PV-DG power output. In this study, we
consider three weather conditions, namely, clear, cloudy and overcast,
as defined according to the National Center for Environmental Infor-
mation (NCEI) [47]. Each weather condition represents an independent
scenario in each stage of sub-problems. The weather conditions follow
a discrete probability distribution, estimated based on the data pro-
vided by the NCEI, with clear, cloudy and overcast corresponding to
probabilities [0.27, 0.29, 0.44], respectively [47].

We use NREL’s PVWatts calculator to provide estimated power out-
uts, using annual and hourly averages for each PV-DG system. Power
utput is determined for daytime hour using the PV irradiance (W∕m2)
nd is provided for each day of the year by NREL’s PVWatts [48].
V irradiance from day 15 of each month is used to determine the
ercentage of the total irradiance witnessed for each daytime hour. This
s done due to daylight savings, which causes the increases in irradiance
uring the morning hours (i.e., 6 am–7 am) and later in the afternoon
i.e., 5 pm–6 pm) when the days are longer. The irradiance percentage
t each daytime hour is then multiplied by the power output for each
ype of PV-DG. This provides an estimate for the output power at each
aytime hour. We then aggregate these 12 h of power output, thus
iving us a daily estimate of power output for each PV-DG type.

The PV-DG power outputs, determined by PVWatts, are set as the
stimates for a ‘‘clear day’’ to help account for the weather condition
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effects. Then, 10%–25% of the clear day power output for each PV-DG
is applied as the power output for a cloudy day [49], with 5%–10%
applied as the power output for a day with overcast skies [50]. The
mid-points from the two percent ranges are used, thus 18% of the clear
day power output is applied for cloudy days and 8% is applied for
overcast days. Fig. 4(a) shows the hour-by-hour estimated power output
for a 5 MW PV-DG, where variation in estimated power output for each
hour is accounted for depending on the conditions of weather (cloud
coverage) on a given day; the profile of power output is similar for a 1
MW and 500 kW PV-DG as well, but with less total output. The impact
of the cloud coverage on the power output of PV-DGs is also portrayed
in Fig. 4, thus showing why considering the weather uncertainty of a
given day within the utility’s serviced region is important.

5.2. Critical load power demand

Data used for the power demand of each building type is taken
from US Energy Information Administration (EIA) surveys. The surveys
provide commercial building power demands for the southern region
of the country [51]. Percent sun (%sun) measures how often sunlight
hits the ground for a certain geographic area. The %sun measure for
the Tennessee area in the case study is 56% [52], and is applied to
each building’s power demand since the model emphasizes the 6 am–
6 pm operation of PV-DG. The uncertainty in power demand for each
type of critical load is addressed using the hourly (6 am–6 pm) demand
averages provided by the US DoE [53]. We then aggregate the 12 h (6
am–6 pm) demand of each critical load, thus giving us a daily power
demand for all buildings. This same demand is applied to each stage
(day) of the modeling horizon with the assumption that power demand
remains relatively consistent, for each day of the week-long outage, for
the critical loads. Fig. 4(b) shows the hour-by-hour estimated power
demand for each critical load.

5.3. PV-DG and ESS costs

The following costs (in $/watt) are provided for each size of PV-
DG: (1) cost for investing in the PV-DG system ; (2) fixed O&M cost,
which signifies the fixed cost of operating and maintaining the PV-
DG’s availability to provide generation and are estimated as 5% of the
investment cost [54]; (3) a cost penalty for excess power penetrated
into the network from PV-DG, which is set equal to the cost for
investing in the PV-DG system. Since the investment cost is expressed
in $/watt (the cost to invest in 1 W of power), we equate this to the
excess power penalty as this penalty represents the cost of not using
the invested power to supply a building within the network. The cost
to invest in a PV-DG system includes the modules and inverter costs,
the costs for structural and electrical balance of system components,
labor costs for installation, transmission lines and interconnection,
taxes and overhead, inspection, permitting, and land acquisition. A
comprehensive investment cost, which accounts for the entirety of the
microgrid’s development, allows us to model the case study microgrid
as a fully interconnected and operational system. Though small when
compared to the investment and excess power penalty costs, fixed O&M
costs are included in the total cost for practical reasons as they help
capture the totality of expenses incurred by the utility. Fig. 5 in chart
(a) displays the PV-DG costs for each system size.

For the ESSs, we use only one system size (1 MW). Pacific Northwest
National Laboratory, operated by the US DoE, states that a 1 MW
lithium-ion ESS has an investment cost of $1.88/W and a fixed O&M
cost of $0.01/W [55]. The ESS investment costs include the capital costs
for energy capacity, power conversion system costs, the balance of plant
costs, interconnecting transformers, construction, and commissioning
costs [55]. Similar to the PV-DG investment cost, a comprehensive ESS
investment cost (accounts for the entirety of ESS development within
the microgrid network) allows us to model the ESSs in the case study
microgrid as fully connected and functioning in coordination with the
PV-DGs within the microgrid.
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Fig. 4. (a) Estimated power output for a 5 MW PV-DG at each daytime hour based on the type of weather (cloud coverage) experienced that day. Cloudy days output an estimated
18% of the power on Clear days, and Overcast days output an estimated 8% of the power on Clear days; (b) Estimated power demand at each daytime hour based on the building
type.
Fig. 5. Model cost data for investment, operation and maintenance (O&M), excess power penalty, and unmet demand penalty costs. The unmet demand penalty scales are base,
medium (50x base) and high (100x base).
5.4. Critical load unmet demand penalty

Each critical load has a cost penalty for power demand that is
unmet, which is assigned using an importance hierarchy. The hierarchy
of importance for the buildings may change and depends on the specific
area the utility services. Utilities using the model can decide which
buildings they deem as most important when a widespread blackout
occurs, and the established microgrid is switched to island mode oper-
ation. The inclusion of the budget constraint puts a limit on how much
total power the microgrid can output. Thus, we use the importance
hierarchy to help the model decide which critical loads have priority
when supplying disaster relief power. The case study assigns the highest
priority to hospitals, giving hospitals the largest penalty cost for unmet
demand. After the hospitals, grocery stores, police and fire stations, and
gas stations are prioritized in that order. Data from EIA surveys shows
police and fire stations as having similar demand for power [51]; thus
we assigned the two stations the same penalty cost for unmet demand.

Fig. 5, chart (b) displays the penalty cost for unmet demand at each
type of building using sensitivity levels of Base, Medium, and High. The
sensitivity analysis helps us determine how sensitive the model is to the
penalty of unmet demand in the research. We assign a ‘‘Base’’ penalty,
where 50x and 100x the ‘‘Base’’ gives the ‘‘Medium’’ and ‘‘High’’ level
penalty costs, respectively. There exists no set market rule for what
an unmet demand penalty cost should be, and the literature models
unmet demand penalties via arbitrarily assigned penalties. Thus, we
follow the same approach in this study and set the unmet demand
penalty for a hospital, the highest priority building type, at $10.00 for
the ‘‘Base’’ penalty level. We determined a penalty of $10.00 through
9

trial and error as a $10.00 penalty proved large enough to demonstrate
how the unmet demand penalty impacts the power supply decisions of
the model. The remaining building types were assigned unmet demand
penalties that scaled the $10.00 assigned to the hospital. Following the
importance hierarchy of the buildings, grocery stores were assigned an
unmet demand penalty of $7.00, fire and police stations were assigned
a $5.00 penalty cost, and gas stations $3.00.

5.5. 5-building and 10-building networks

Our case study uses a 5 and 10-building network in Tennessee.
The networks contain the critical loads the Tennessee area utilizes for
services essential to the public (e.g., food, safety, transportation and
healthcare). For the 5-building network, there is one of each type of
critical load (e.g., hospital, grocery store, fire, police and gas station).
For the 10-building network, there are two of each type of critical load.
The purpose of modeling two different network sizes is to assess how
much demand each microgrid budget option can reliably meet/cover
over the course of the week-long outage. This allows a utility to
determine adequate combinations of budget option and network size
for the microgrid.

Recall that the use of a comprehensive DG and ESS investment
cost, which accounts for the entirety of the microgrid’s development,
allows us to model the case study microgrid as a fully connected and
operational network. Thus we treat the two microgrid networks as
a facility location problem network [37], where the buildings serve
as facilities with demand, the DGs and ESSs serve as distribution
centers which supply the demand, and the euclidean distance between
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Table 2
Optimal solutions of a network composed of 5 critical loads, where PV-DGs are not required within the utility’s microgrid. For this specific model, the optimal solutions were
witnessed when the Base demand-met penalty is applied for all budget options. The best solution is shown in bold.

5 Building & Min DGs = 0 (Base unmet demand penalty)

Solution result B = $0M B = $1M B = $5M B = $10M B = $15M

Solving time (s) 26 25 25 188 177

DG location(s) [4] [4]
ESS location(s) [1, 3] [1, 3, 4, 5] [1, 3, 4, 5]

Percent of scenarios (3279 total) 0% 0% 0% 100% 100%
with 100% demand met

DG investment cost $ – $ 875,000 $ 875,000 $ – $ –
ESS investment cost $ – $ – $ 3,760,000 $ 7,520,000 $ 7,520,000
DG O&M cost $ – $ 44,000 $ 44,000 $ – $ –
ESS O&M cost $ – $ – $ 20,000 $ 40,000 $ 40,000

Optimal solution $ 34,155,105 $ 32,009,768 $ 16,775,748 $ 9,976,331 $ 9,976,331
Q-function solution $ 34,155,105 $ 31,090,768 $ 12,076,748 $ 2,416,331 $ 2,416,331

DG power supply efficiency cost $ – $ 264,611 $ 264,611 $ – $ –
ESS power supply efficiency cost $ – $ – $ 785,981 $ 2,416,331 $ 2,416,333
Excess power cost $ – $ – $ – $ – $ –
Unmet demand cost $ 34,155,105 $ 30,826,156 $ 11,026,156 $ – $ –

Unmet demand (W) 3,587,320 3,254,425 1,274,425 0 0
Fig. 6. Pie chart of the optimal solution (objective function), broken down by
percentage make-up of each of the cost functions in the objective. This is for a
microgrid solution covering a network composed of 5 critical loads, where PV-DGs
are not required within the utility’s microgrid.

each building and DG/ESS serves as the cost for supply which is also
minimized in the objective function.

6. Computational results and discussions

Results for the MS-CFLCP are provided based on the following:
(1) the version of MS-CFLCP, where one version of the model does
not require a minimum number of PV-DGs to be located within the
microgrid and the second version of the model requires a minimum of
at least one PV-DG be located as explained in Eq. (2); (2) the size of
the utility’s serviced network, where one network contains 5 critical
loads and the second network contains 10 critical loads; (3) the unmet
demand penalty level where the best solution is witnessed. For the two
networks analyzed, the 5-building network contains one of each type
of critical load and the 10-building network contains two of each type.

6.1. Results for a network of 5 critical loads

The results of the 5-building network, for the model where minimum
DGs located = 0, are provided in Table 2 with the best solution in bold.
10
Fig. 7. Visual of where the ESSs are located in the best solution for the 5-building
network; results are for the model where minimum DGs = 0. Hospitals and Grocery
Stores install 5 MW DGs, Fire and Police Stations install 1 MW DGs, Gas Stations
install 500 kW DGs and all buildings install 1 MW ESSs.

For a 5-building network, a $10M budget provides the best microgrid
solution for the model where minimum DGs located = 1. The solution
is the same at each level (Base, Medium, and High) of the unmet
demand penalty, which shows that the best solution is reached at the
Base level without having to utilize the unmet demand penalty to
push the model towards optimality. This solution experiences 100%
network demand coverage (Unmet Demand Cost = 0) for all 3279 total
scenarios, meaning all demand is met for all 5 critical loads in the
network for all 7 days of the week-long outage. The $15M budget
provides the same solutions, at all three levels of the unmet demand
penalty, as the $10M budget. This means a $10M budget is more than
enough to reach the most ideal solution (100% demand coverage for all
3279 total scenarios), and that is a solution with no DGs located, 4 ESSs
at building IDs 1, 3, 4 and 5, and an optimal solution of $9,976,331 of
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Table 3
Optimal solutions of a network composed of 5 critical loads, where a minimum of one PV-DG is required within the utility’s microgrid. For this specific model, the optimal solutions
were witnessed when the Medium penalty for unmet demand was applied for all budget options; we display the Base level so that the effects of the penalty for unmet demand
can be seen as the penalty level increases. The best solution is shown is bold.

5 Building & Min DGs = 1 (Medium unmet demand penalty)

Solution result B = $0M B = $1M B = $5M B = $10M B = $15M

Solving time (s) 25 25 421 366 325

DG location(s) [4] [4] [4] [4]
ESS location(s) [1, 3] [1, 3, 4, 5] [1, 3, 4, 5]

Percent of scenarios (3279 total) 0% 0% 0% 100% 100%
with 100% demand met

DG investment cost $ – $ 875,000 $ 875,000 $ 875,000 $ 875,000
ESS investment cost $ – $ – $ 3,760,000 $ 7,520,000 $ 7,520,000
DG O&M cost $ – $ 44,000 $ 44,000 $ 44,000 $ 44,000
ESS O&M cost $ – $ – $ 20,000 $ 40,000 $ 40,000

Optimal solution $ 1,707,755,243 $ 1,542,491,420 $ 557,057,398 $ 10,489,545 $ 10,489,544
Q-function solution $ 1,707,755,243 $ 1,541,572,420 $ 552,358,398 $ 2,010,545 $ 2,010,544

DG power supply efficiency cost $ – $ 264,611 $ 264,611 $ 217,841 $ 218,777
ESS power supply efficiency cost $ – $ – $ 785,981 $ 1,792,704 $ 1,791,768
Excess power cost $ – $ – $ – $ – $ –
Unmet demand cost $ 1,707,755,243 $ 1,541,307,809 $ 551,307,809 $ – $ –

Unmet demand (W) 3,587,320 3,254,425 1,274,425 0 0

5 Building & Min DGs = 1 (Base unmet demand penalty)

Solution result B = $0M B = $1M B = $5M B = $10M B = $15M

Solving time (s) 26 25 216 259 306

DG location(s) [4] [4] [4] [4]
ESS location(s) [1, 3] [1, 3, 4] [1, 3, 4]

Percent of scenarios (3279 total) 0% 0% 0% 35% 35%
with 100% demand met

DG investment cost $ – $ 875,000 $ 875,000 $ 875,000 $ 875,000
ESS investment cost $ – $ – $ 3,760,000 $ 5,640,000 $ 5,640,000
DG O&M cost $ – $ 44,000 $ 44,000 $ 44,000 $ 44,000
ESS O&M cost $ – $ – $ 20,000 $ 30,000 $ 30,000

Optimal solution $ 34,155,105 $ 32,009,768 $ 16,775,748 $ 10,097,904 $ 10,097,903
Q-function solution $ 34,155,105 $ 31,090,768 $ 12,076,748 $ 3,508,904 $ 3,508,903

DG power supply efficiency cost $ – $ 264,611 $ 264,611 $ 262,713 $ 262,490
ESS power supply efficiency cost $ – $ – $ 785,981 $ 1,525,583 $ 1,525,806
Excess power cost $ – $ – $ – $ – $ –
Unmet demand cost $ 34,155,105 $ 30,826,156 $ 11,026,156 $ 1,720,612 $ 1,720,612

Unmet demand (W) 3,587,320 3,254,425 1,274,425 302,373 302,373
which $7.5M (about 75% of optimal solution/total cost) is investment
costs for the 4 ESSs. Fig. 6 displays a breakdown of how much of the
optimal solution (objective function) each cost function makes up; the
desire is for the optimal solution (objective function) to be primarily
composed of the investment and power supply costs as these are the
only major costs that cannot be minimized to 0 within the model. We
see the desired outlook for the chart in Fig. 6 where the unmet demand
and excess power cost are both at 0%, signifying an ideal solution.
Fig. 7 shows the location of the four ESSs in the best solution for the
5-building network (minimum DGs = 0).

The results of the 5-building network, for the model where minimum
DGs located = 1, are provided in Table 3 with the best solution in bold.
Similar to the model where minimum DGs located = 0, a $10M budget
provides the best solution for the model where minimum DGs located
= 1. For this model, however, it is when the Medium level penalty
for unmet demand is applied (with a $10M budget) that we see the
best solution. The Base level solution, with a $10M budget, experiences
100% network demand coverage (Unmet Demand Cost = 0) for 1159 of
the 3279 total scenarios (35%). The Medium level of the unmet demand
penalty pushes the model to 100% network demand coverage for all
3279 scenarios. The $15M budget provides the same solutions, at all
three unmet demand penalty levels, as the $10M budget. This means
a $10M budget is more than enough to reach the ideal solution (100%
demand coverage for all 3279 total scenarios), and that is a solution
11
Fig. 8. Pie chart of the optimal solution (objective function), broken down by
percentage make-up of each of the cost functions in the objective. This is for a microgrid
solution covering a network composed of 5 critical loads, where a minimum of one
PV-DG is required within the utility’s microgrid.
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with 1 DG located at building ID 4, 4 ESSs at building IDs 1, 3, 4 and
5, and an optimal solution of $10,489,545 of which $8.4M (about 80%
of optimal solution/total cost) is investment costs for the 1 DG and 4
ESSs. Fig. 8 displays a breakdown of how much of the optimal solution
(objective function) each cost function makes up; the desire is for the
optimal solution (objective function) to be primarily composed of the
investment and power supply costs as these are the only major costs
that cannot be minimized to 0 within the model. As with the first 5-
building network model, we again see the desired outlook for the chart
in Fig. 8 where the unmet demand and excess power cost are both at
0%, signifying an ideal solution.

6.1.1. Effects of the unmet demand and excess power penalties (5-building)
The effects of the unmet demand penalty (applied in the objective’s

4th cost function, which minimizes unmet demand and unmet demand
costs within the microgrid) are shown in the Table 3 results. For the
model requiring DG location (Minimum DGs Located = 1 model), the
Base level solutions for the $10M and $15M budgets locate a total of
$6.5M (total investment) in DGs and ESSs (DG = 4 and ESS = 1, 3,
4) versus a total of $8.4M (total investment) in DGs and ESSs (DG
= 4 and ESS = 1, 3, 4, 5) located at the Medium level solutions.
This is because the model found it cheaper to incur the additional
investment costs of $1.9M in DGs and ESSs within the microgrid to
help alleviate the total unmet demand experienced with the Medium
level penalty versus those experienced at the Base level penalty. The
additional $1.9M reduced total unmet demand from 302,373 W to 0 W,
and increased the number of scenarios where 100% network demand
coverage is experienced from 35% (at the Base level for the $10M and
$15M budget options) to an ideal 100% (at the Medium level for the
$10M and $15M budget options) of the 3279 total scenarios. When
the High level penalty is applied, the best solution for a $10M and
$15M budgets remains the same (DG = 4 and ESS = 1, 3, 4, 5), which
means that the Medium level penalty achieves the best solution for all
levels when given a $10M or $15M budget. What changes from the
Base to Medium level is the addition of another ESS at building ID 5.
When the penalty scale moves to the Medium level, more power output
is required to help alleviate the total unmet demand experienced in
the network, and thus the model locates another ESS at building ID 5.
Locating the ESS at building ID 5 adds an additional 1 MW of stored
power and an additional $1.9M to the total investment cost. However,
the additional $1.9M helped reduce the total unmet demand to 0 W,
giving us a fully covered network (100% demand coverage for all 3279
total scenarios) for the entire week-long outage.

The effects of the excess power penalty (applied in the objective’s
5th cost function which minimizes the excess renewable power within
the microgrid) are shown by the resulting $0 in excess power costs for
all solutions across all budgets in both models. This means that the
applied excess penalty costs ensured that the DGs and ESSs located in
each solution provided enough power to, at most, meet the demand
of the network. We never witness a solution where the installed DGs
and ESSs provided more power to the network than what the network
has in demand. Thus, we see how applying an excess power penalty
cost benefits the microgrid and main grid by ensuring issues such as
utility-scale reverse power flow (which is caused by excess renewable
generation and has system functionality consequences such as voltage
peaks and reduced power quality [40]) do not occur within the de-
signed microgrid network and do not increase the optimal solution of
the microgrid.

6.1.2. Minimum DG vs. no minimum DG model (5-building)
The difference in the two models is shown when comparing Tables 2

and 3. One model contains a constraint that requires at least 1 DG to be
located within the microgrid, while the other model does not contain
this constraint. We see that, for the $10M and $15M budget options,
the model where minimum DGs located = 0 finds it more cost effective
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to locate just ESSs and NO DGs at all within the microgrid. This is made
possible due to this model not containing the constraint that requires
at least 1 DG to be located. These are the only budget options, across
both models, where NO DGs are located at all (disregarding the $0
investment which by default would not have any DGs or ESSs located
due to a budget of $0). Utilities that service heavily clear regions may
want to mandate that their microgrid contains at least one DG so that
they can take advantage of the predominantly clear weather (cloud
coverage) of the region. On the other hand, utilities that service regions
with a lesser number of annual clear days may not find it as useful
to require a DG in the microgrid due to the added expense the DG
would bring if the ESSs are enough to meet demand. By providing both
models, we allow utilities the flexibility of deciding based upon the
clear weather (cloud coverage) regularity of their serviced regions.

6.2. Results for a network of 10 critical loads

The results of the 10-building network, for the model where mini-
mum DGs located = 0, are provided in Table 4 with the best solution
in bold. For a 10-building network, a $15M budget at the Medium
evel of the unmet demand penalty, provides the best solution for the
odel where minimum DGs located = 0. This solution experiences

100% network demand coverage (Unmet Demand Cost = 0) for 3192
of the 3279 total scenarios (97%). The $15M budget option at the
Base level produces a lower optimal solution ($18,459,884) than this
solution ($19,729,118) but only experiences 0 unmet demand for 86%
of the 3279 total scenarios, whereas this solution experiences 0 unmet
demand for 97% of the 3279 total scenarios. The Medium level for the
$15M budget option has a slightly higher investment cost ($14.9M)
than the Base level for the $15M budget option ($14.0M), but both
investments costs fall within the $15M budget provided. The solution
results in a 1 MW DG located at building ID 10 and ESSs located at
building IDs 1, 2, 5, 6, 7, 9 and 10.

The results of the 10-building network, for the model where mini-
mum DGs located = 1, are provided in Table 5 with the best solution
in bold. The best solution for the model where minimum DGs located
= 1 is identical to the best solution for the model where minimum
DGs located = 0, and is witnessed with a $15M budget when the
Medium unmet demand penalty is applied. The solution experiences
100% network demand coverage (Unmet Demand Cost = 0) for 3192
of the 3279 total scenarios (97%) just as was experienced in the model
where the minimum DGs located = 0. The DGs and ESSs located, as well
as the costs and optimal solution are also similar between both model
solutions. Fig. 9 displays a breakdown of how much of the optimal
solution (objective function) each cost function makes up; the desire is
for the optimal solution (objective function) to be primarily composed
of the investment and power supply costs as these are the only major
costs that cannot be minimized to 0 within the model. We do not see
the desired outlook for the chart in Fig. 9 as 3% of the optimal solution
is unmet demand costs. Thus, unlike the 5-building network microgrid
solution, the increased demand of the 10-building network does not
lead to an ideal microgrid solution where 100% of the network demand
is covered. Fig. 10 shows the location of the one DG and seven ESSs
in the best solution for the 10-building network (both models, where
minimum DGs = 0 and 1, reached equivalent best solutions).

Since the best microgrid solution for a network of 10 critical loads
only reaches 100% demand coverage for 97% of the 3279 scenarios,
we portray the unmet demand for the worst-case week - a week where
each of the 7 days experiences overcast weather (cloud coverage) and
the PV-DGs output the least amount of power into the microgrid — in
Fig. 11. Fig. 11 shows 0% unmet demand for days 1–4 of the worst-
case week, which is ideal. By day 5 and 6, the microgrid experiences

1% unmet demand and 8% unmet demand by day 7.
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Table 4
Optimal solutions of a network composed of 10 critical loads, where PV-DGs are not required within the utility’s microgrid. For this specific model, the optimal solutions were
witnessed when the Medium penalty for unmet demand was applied for all budget options; we display the Base level so that the effects of penalty can be seen as the penalty
level increases. The best solution is shown in bold.

10 Building & Min DGs = 0 (Medium unmet demand penalty)

Solution result B = $0M B = $1M B = $5M B = $10M B = $15M

Solving time (s) 53 54 54 380 3587
DG location(s) [7] [7] [10]
ESS location(s) [1, 2] [1, 2, 6, 7, 10] [1, 2, 5, 6, 7, 9, 10]

Percent of scenarios (3279 total) 0% 0% 0% 0% 97%
with 100% demand met

DG investment cost $ – $ 875,000 $ 875,000 $ – $ 1,720,000
ESS investment cost $ – $ – $ 3,760,000 $ 9,400,000 $ 13,160,000
DG O&M cost $ – $ 44,000 $ 44,000 $ – $ 86,000
ESS O&M cost $ – $ – $ 20,000 $ 50,000 $ 70,000

Optimal solution $ 3,415,510,485 $ 3,250,040,743 $ 2,263,820,743 $ 951,340,510 $ 19,729,118
Q-function solution $ 3,415,510,485 $ 3,249,121,743 $ 2,259,121,743 $ 941,890,510 $ 4,693,118

DG power supply efficiency cost $ – $ 58,692 $ 58,692 $ – $ 659,072
ESS power supply efficiency cost $ – $ – $ – $ 1,380,025 $ 3,368,690
Excess power cost $ – $ – $ – $ – $ –
Unmet demand cost $ 3,415,510,485 $ 3,249,063,051 $ 2,259,063,051 $ 940,510,485 $ 665,357

Unmet demand (W) 7,174,640 6,841,745 4,861,745 2,224,640 3226

10 Building & Min DGs = 0 (Base unmet demand penalty)

Solution result B = $0M B = $1M B = $5M B = $10M B = $15M

Solving time (s) 53 54 53 402 2714

DG location(s) [7] [7] [7]
ESS location(s) [1, 2] [1, 2, 6, 7, 10] [1, 2, 4, 5, 6, 7, 10]

Percent of scenarios (3279 total) 0% 0% 0% 0% 86%
with 100% demand met

DG investment cost $ – $ 875,000 $ 875,000 $ – $ 875,000
ESS investment cost $ – $ – $ 3,760,000 $ 9,400,000 $ 13,160,000
DG O&M cost $ – $ 44,000 $ 44,000 $ – $ 44,000
ESS O&M cost $ – $ – $ 20,000 $ 50,000 $ 70,000

Optimal solution $ 68,310,210 $ 65,958,953 $ 49,938,953 $ 29,640,234 $ 18,459,884
Q-function solution $ 68,310,210 $ 65,039,953 $ 45,239,953 $ 20,190,234 $ 4,310,884

DG power supply efficiency cost $ – $ 58,692 $ 58,692 $ – $ 84,566
ESS power supply efficiency cost $ – $ – $ – $ 1,380,025 $ 4,122,267
Excess power cost $ – $ – $ – $ – $ –
Unmet demand cost $ 68,310,210 $ 64,981,261 $ 45,181,261 $ 18,810,210 $ 104,062

Unmet demand (W) 7,174,640 6,841,745 4,861,745 2,224,640 26,726
Fig. 9. Pie chart of the optimal solution (objective function), broken down by
percentage make-up of each of the cost functions in the objective. This is for a microgrid
solution covering a network composed of 10 critical loads, regardless of minimum DG
requirements. Ideally, investment and power supply costs should make up the majority
of the chart as these are the only major costs that cannot be minimized to 0.
13
6.2.1. Effects of the unmet demand and excess power penalties (10-
building)

The effects of the unmet demand penalty (applied in the objective’s
4th cost function which minimizes unmet demand and unmet demand
costs within the microgrid) witnessed in Table 3 are also seen in the
Table 5 results. For the model requiring DG location (minimum DGs
Located = 1 model), the Base level solution for the $10M budget locates
a total of $9.2M in DGs and ESS (DG = 10 and ESS = 1, 2, 6, 7)
versus a total of $9.9M in DGs and ESS (DG = 4, 7, 10 and ESS = 1,
2, 7) located at the Medium level. This is because the model found
it cheaper to incur the additional investment costs of $715,000 in
DGs and ESSs within the microgrid to help alleviate the total unmet
demand experienced at the Medium level penalty versus that at the
Base level penalty (additional $715,000 reduced total unmet demand
by 2,548,851–2,541,192 = 7659 W); 7659 W is enough wattage to
power a gas station for 2 daytime periods (12 daytime hours 𝑥 2 days).
When the High level penalty is applied, the best solution for a $10M
budget remains the same (DG = 4, 7, 10 and ESS = 1, 2, 7), which
means that the Medium level penalty achieves the optimal solution
for all levels when given a $10M budget. We see the unmet demand
penalty effects again for the $15M budget of both models where the
Base level solution locates a total of $14.0M in DGs and ESSs versus
a total of $14.8M. This is because the Base level solutions locate a
smaller 500 kW DG at building ID 7. When the penalty scale moves
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Table 5
Optimal solutions of a network composed of 10 critical loads, where a minimum of one PV-DG is required within the utility’s microgrid. For this specific model, the optimal
solutions were witnessed when the Medium penalty for unmet demand was applied for all budget options; we display the Base level so that the effects of the penalty can be seen
as the penalty level increases. The best solution is shown in bold.

10 Building & Min DGs = 1 (Medium unmet demand penalty)

Solution result B = $0M B = $1M B = $5M B = $10M B = $15M

Solving time (s) 53 80 691 30,018 2440

DG location(s) [7] [7] [4, 7, 10] [10]
ESS location(s) [1, 2] [1, 2, 7] [1, 2, 5, 6, 7, 9, 10]

Percent of scenarios (3279 total) 0% 0% 0% 1% 97%
with 100% demand met

DG investment cost $ – $ 875,000 $ 875,000 $ 4,315,000 $ 1,720,000
ESS investment cost $ – $ – $ 3,760,000 $ 5,640,000 $ 13,160,000
DG O&M cost $ – $ 44,000 $ 44,000 $ 216,000 $ 86,000
ESS O&M cost $ – $ – $ 20,000 $ 30,000 $ 70,000

Optimal solution $ 3,415,510,485 $ 3,250,040,743 $ 2,263,820,743 $ 1,111,186,198 $ 19,729,117
Q-function solution $ 3,415,510,485 $ 3,249,121,743 $ 2,259,121,743 $ 1,100,985,198 $ 4,693,117

DG power supply efficiency cost $ – $ 58,692 $ 58,692 $ 1,659,926 $ 660,074
ESS power supply efficiency cost $ – $ – $ – $ 245,420 $ 3,367,688
Excess power cost $ – $ – $ – $ – $ –
Unmet demand cost $ 3,415,510,485 $ 3,249,063,051 $ 2,259,063,051 $ 1,099,079,854 $ 665,357

Unmet demand (W) 7,174,640 6,841,745 4,861,745 2,541,192 3226

10 Building & Min DGs = 1 (Base unmet demand penalty)

Solution result B = $0M B = $1M B = $5M B = $10M B = $15M

Solving time (s) 53 78 511 1097 2547

DG location(s) [7] [7] [10] [7]
ESS location(s) [1, 2] [1, 2, 6, 7] [1, 2, 4, 5, 6, 7, 10]

Percent of scenarios (3279 total) 0% 0% 0% 0% 86%
with 100% demand met

DG investment cost $ – $ 875,000 $ 875,000 $ 1,720,000 $ 875,000
ESS investment cost $ – $ – $ 3,760,000 $ 7,520,000 $ 13,160,000
DG O&M cost $ – $ 44,000 $ 44,000 $ 86,000 $ 44,000
ESS O&M cost $ – $ – $ 20,000 $ 40,000 $ 70,000

Optimal solution $ 68,310,210 $ 65,958,953 $ 49,938,953 $ 32,438,655 $ 18,459,889
Q-function solution $ 68,310,210 $ 65,039,953 $ 45,239,953 $ 23,072,655 $ 4,310,889

DG power supply efficiency cost $ – $ 58,692 $ 58,692 $ 661,763 $ 94,531
ESS power supply efficiency cost $ – $ – $ – $ 358,573 $ 4,111,931
Excess power cost $ – $ – $ – $ – $ –
Unmet demand cost $ 68,310,210 $ 64,981,261 $ 45,181,261 $ 22,052,322 $ 104,437

Unmet demand (W) 7,174,640 6,841,745 4,861,745 2,548,851 26,880
to the Medium level, more power output is required to help alleviate
the total unmet demand experienced in the network, and thus a larger
(1 MW) DG is located at building ID 10 instead of the 500 kW seen in
the Base level solution. Locating the 1 MW DG at building ID 10 adds
an additional $845,000 to the total investment cost, but the additional
$845,000 helps to reduce the total unmet demand by 26,880–3226 =
23,654 W); 23,654 W is enough wattage to power a grocery store for
1 daytime period (12 daytime hours) and a gas station for 2 daytime
periods (12 daytime hours 𝑥 2 days). This increases the number of
cenarios where 100% demand coverage is witnessed from 86% (at the
ase level, $15M) to 97% (at the Medium level, $15M) of the 3279
otal scenarios.

The results in Tables 4 and 5 also show how the unmet demand
enalty affects of the objective’s 3rd cost function, which minimizes
istribution power losses by reducing the distance traveled for power
upply, thus improving power supply efficiency. At the $15M budget
or the Base level (both models), we see ESSs located at building IDs
, 2, 4, 5, 6, 7 and 10. Then, at the Medium level, the ESS at building
D 4 is replaced by an ESS at building ID 9. This occurs due to the
ncrease in unmet demand penalty cost. As the penalty cost for unmet
emand increases, the model looks to minimize the optimal solution by
inimizing another cost function of the objective, and in this case, it

s the distance for power supply cost function. Since all ESSs have the
ame capacity of 1 MW, the change between the building IDs where an
14
ESS is located at the Base and Medium levels of the $15M budget occur
due to the model minimizing the distance traveled for power supply to
help alleviate the overall optimal solution of the model. This change,
along with the larger DG at building ID 10 versus ID 7, helps reduce
the ESS power supply cost from $4.1M at the Base level to $3.3M at
the Medium level solution for the $15M budget option.

As we saw in the 5-building network microgrid solution, the effects
of the excess power penalty are again shown by the resulting $0 in
excess power costs across all microgrid solutions for both models. We
again see how applying an excess power penalty cost benefits the
microgrid system by ensuring issues such as utility-scale reverse power
flow (which is caused by excess renewable generation and has system
functionality consequences [40]) do not increase the optimal solution
of the microgrid or potentially cause issues such as voltage peaks and
reduced power quality within the system.

6.2.2. Minimum DG vs. no minimum DG model (10-building)
As with the 5-building microgrid solutions, we see the difference in

the two models by comparing the results of the 10-building microgrid
solutions in Tables 4 and 5. We see that, for the $10M budget option,
the model where minimum DGs located = 0 model finds it more cost
effective to locate just ESSs and NO DGs at all within the microgrid.
This happens to be the only budget option across both models for the
10-building network, where no DGs are located at all (disregarding
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Fig. 10. Illustration of the DG and ESSs locations in the optimal solution for the 10-
building network. Results are the same for both models (minimum DGs = 0 and 1), i.e.,
with or without DG requirement for ESSs. Hospitals and Grocery Stores install 5 MW
DGs, Fire and Police Stations install 1 MW DGs, Gas Stations install 500 kW DGs and
all buildings install 1 MW ESSs.

Fig. 11. Daily unmet demand for the worst-case week-long outage, which is a week
with overcast skies (least PV-DG output) every day of the week-long outage. Demand
is fully met until days 5–7 of the week.

the $0 investment, which by default would not have any DGs or ESSs
located due to a budget of $0). As previously stated, by providing both
models, we allow utility flexibility to decide which model best applies
to their serviced region based upon the clear weather (cloud coverage)
regularity of the region.

6.3. ROIs for microgrid solution (5-building and 10-building networks)

Return on Investment (ROI) is a performance measure used to
evaluate the efficiency of an investment or compare the efficiency
of a number of different investments. The ROI denominator is the
total investment cost of the DGs+ESSs of each solution (given budget
options of $0M, $1M, $5M, $10M, or $15M). The ROI numerator is
the ‘‘returns’’, which are what the utility gains by investing $X millions
into a microgrid. We define ‘‘returns’’ as the critical loads experiencing
15
uninterrupted power supply during the week-long power outage caused
by the natural disaster as this is the focus of the model and research.
The returns are computed by subtracting the optimal solution (mini-
mized total cost of the objective function) of a $1, $5, $10, or $15M
budget option, from the optimal solution if the utility does not invest in
a microgrid at all ($0M budget option). We then divide this subtracted
value by the total investment cost (DG+ESS investment cost) of the $1,
$5, $10, or $15M budget option. Every budget option should return
an ROI greater than 100% as any microgrid, whether a small one with
less than $1M invested or a larger one, will provide more power into
the network than no microgrid at all ($0M budget option) as we are
modeling a situation with the microgrid islanded as the only power
source for the critical loads within the network. Thus, the goal would be
to determine how much more return each investment amount provides
when compared to another investment amount.

Tables 6 and 7 display the ROIs for a microgrid solution covering
a network of 5 critical loads with and without a minimum of one
PV-DG within the microgrid, respectively. For the results in Table 6,
the highest ROI is 375% and is achieved by the $5M budget option.
However, based on optimal solutions, the best solution from Table 6
occurs when a $10M budget is provided and results in an ROI of 322%.
For the results in Table 7, the best solution is reached when the Medium
penalty for unmet demand is applied (see Table 3). Thus, the ROI is
also affected by the Medium level penalty and results in the large ROI
outcome of 20218%.

Tables 8 and 9 display the ROIs for a microgrid solution covering a
network of 10 critical loads with and without a minimum of one PV-
DG within the microgrid, respectively. For the results in both Tables 8
and 9, the best solution is reached at the Medium level of the unmet
demand penalty (see Tables 4 and 5); the two models reached identical
best solutions. We see another large ROI outcome of 22821% for both
solutions due to the effects of the Medium level penalty.

In all four ROI result tables, the best solution’s ROI (written in
bold) is less than the highest ROI. This difference can be attributed
to a larger DG+ESS investment (denominator of ROI equation) for
the best solutions versus that of the solutions with the highest ROI.
Using Table 6 as an example, the difference in the 375% ROI (the
highest ROI of the solutions) and the 322% ROI (the ROI of the best
solution) is caused by a larger DG+ESS investment (denominator of ROI
equation) for the $10M budget (about $7.5M) versus that of the $5M
budget (about $4.6M). The same situation can be seen for the results
in Tables 7–9.

7. Conclusion, limitations and future research

We develop a multi-stage stochastic program that models the invest-
ment economics, reliability, and resilience of a utility-owned microgrid
operating in island mode due to natural disaster-caused damage to
the main grid. We model a situation where the main grid damage
has caused a week-long power outage, and the microgrid is used
by the utility to provide disaster relief power supply to the critical
loads within the utility’s serviced region. The microgrid model uses
photovoltaic distributed generators (PV-DGs) and energy storage sys-
tems, while accounting for the hourly uncertainty and weather (cloud
coverage) uncertainty in PV-DG power output. The nested L-shaped
method is used to solve the multi-stage stochastic program, and a
holistic objective function that captures the investment, operation and
maintenance, power supply efficiency, reliability, and resilience of the
microgrid in terms of a minimized total cost to the utility is provided.
We consider the budgetary limitations of a utility when establishing
such a microgrid and thus limit the investment costs to allocated budget
amounts.

The model is applied to a case study resulting in an exhaustive
solution that analyzes the microgrid’s reliability performance across
3279 scenarios of a week-long power outage, where each scenario is a
combination of the day of the outage (7 days total) and the weather
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Table 6
Each investment’s Return on Investment (ROI) displayed by budget option for a microgrid solution covering a network
composed of 5 critical loads, where PV-DGs are not required within the utility’s microgrid. The best solution is shown
in bold.
5 Buildings & Min DGs = 0 (Base unmet demand penalty)

DG+ESS investment (Budget) Optimal solution ROI of investment

$0 ($0M) $ 34,155,105 0%
$875,00 ($1M) $ 32,009,768 245%
$4,635,000 ($5M) $ 16,775,748 375%
$7,520,000 ($10M) $ 9,976,331 322%
$7,520,000 ($15M) $ 9,976,331 322%
Table 7
Each investment’s Return on Investment (ROI) displayed by budget option for a microgrid solution covering a network
composed of 5 critical loads, where a minimum of one PV-DG is required within the utility’s microgrid. The best solution is
shown in bold, and is reached when the Medium penalty for unmet demand; we display the Base level so that the effects of
the penalty can be seen as the penalty level increases.
5 Buildings & Min DGs = 1 (Medium unmet demand penalty)

DG+ESS investment (Budget) Optimal solution ROI of investment

$0 ($0M) $ 1,707,755,243 0%
$875,000 ($1M) $ 1,542,491,420 18 887%
$4,635,000 ($5M) $ 557,057,398 24 826%
$8,395,000 ($10M) $ 10,489,545 20218%
$8,395,000 ($15M) $ 10,489,544 20 218%

5 Buildings & Min DGs = 1 (Base unmet demand penalty)

DG+ESS investment (Budget) Optimal solution ROI of investment

$0 ($0M) $ 34,155,105 0%
$875,000 ($1M) $ 32,009,768 245%
$4,635,000 ($5M) $ 16,775,748 375%
$6,515,000 ($10M) $ 10,097,904 369%
$6,515,000 ($15M) $ 10,097,903 369%
Table 8
Each investment’s Return on Investment (ROI) displayed by budget option for a microgrid solution covering a network
composed of 10 critical loads, where PV-DGs are not required within the utility’s microgrid. The best solution is shown
in bold, and is reached when the Medium penalty for unmet demand; we display the Base level so that the effects of the
unmet demand penalty can be seen as the penalty level increases.
10 Buildings & Min DGs = 0 (Medium unmet demand penalty)

DG+ESS investment (Budget) Optimal solution ROI of investment

$0 ($0M) $ 3,415,510,485 0%
$875,000 ($1M) $ 3,250,040,743 18 911%
$4,635,000 ($5M) $ 2,263,820,743 24 848%
$9,400,000 ($10M) $ 951,340,510 26 215%
$14,880,000 ($15M) $ 19,729,118 22821%

10 Buildings & Min DGs = 0 (Base unmet demand penalty)

DG+ESS investment (Budget) Optimal solution ROI of investment

$0 ($0M) $ 68,310,210 0%
$875,000 ($1M) $ 65,958,953 269%
$4,635,000 ($5M) $ 49,938,953 396%
$9,400,000 ($10M) $ 29,640,234 411%
$14,035,000 ($15M) $ 18,459,884 355%
c

witnessed that day (e.g., clear, cloudy or overcast cloud coverage).
Solutions to the model provide the optimal location, size, power sup-
ply assignment, and the total number of DGs and ESSs within the
utility-owned microgrid. Results of the model show that an islanded
utility-scale microgrid can effectively provide power supply to a net-
work of 5 and 10 critical loads, with 100% and 97% of the scenarios
experiencing full demand coverage, respectively, over the duration of
a week-long power outage. The full development of such microgrids
requires investments of $7.5M and $14.8M for the 5 and 10-building
networks, respectively.

The developed model has limitations relating to the building de-
mand used and the modeling horizon. The demand data of the buildings
in each stage (day) is a sum of each building’s daytime demand from
6:00 AM to 6:00 PM. We account for only the daytime demand due
to the microgrid functioning with the use of PV-DGs that require
sunlight. nighttime demand of the buildings is handled by the back-
up generators we assume each building possesses. Future work can
16
remove the assumption that the buildings possess back-up generators
and develop the microgrid model to account for the nighttime demand
of the buildings as well. In regards to the modeling horizon, each
stage equates to a 12 h day. However, natural disaster-caused power
outages can last only hours, and thus, an hour-by-hour analysis of the
developed model would be beneficial. Breaking 7 days into an hour-
by-hour analysis (168 h or 168 stages) would lead to unreasonably
long computation time with the current model. Thus, future work can
be done to investigate the use of simulation software to solve the
developed model as simulations can handle much longer modeling
horizons.
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Table 9
Each investment’s Return on Investment (ROI) displayed by budget option for a microgrid solution covering a network
composed of 10 critical loads, where a minimum of one PV-DG is required within the utility’s microgrid. The best solution
is shown in bold, and is reached when the Medium penalty for unmet demand is applied; we display the Base level so that
the effects of the unmet demand penalty can be seen as the penalty level increases.
10 Buildings & Min DGs = 1 (Medium unmet demand penalty)

DG+ESS investment (Budget) Optimal solution ROI of investment
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$4,635,000 ($5M) $ 2,263,820,743 24 848%
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