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Abstract—This paper presents a new data-driven methodology
for power system coherency identification of generator and non-
generator buses. This methodology is exclusively based on intrinsic
statistical properties extracted directly from observations, without
any prior assumption of the probability distribution function (PDF)
for the data. The main advances of this proposal are: (i) gathering of
statistical information from the data itself despite scenarios where
the PDF may change (different inverter-based load and generation
scenarios, load levels of the system, and changes in topology); and
(ii) assignment of buses into coherent areas without any tuning
of parameters, nor manually labeling of huge amounts of training
data. This new method, called typicality-based data analysis (TDA),
is applied to the correlation metric of the distance between dynamic
responses of buses, either voltage angles or frequencies. Simulated
signals from a benchmark power system with cases considering
the presence of non-synchronous generation and islanding condi-
tions, and real data associated with generation trips in the U.S.
Eastern Interconnection are used to corroborate the methodology
effectiveness.

Index Terms—Coherency, clustering, data-driven, WAMS,
statistical typicality.

I. INTRODUCTION

THE electric power system is currently experiencing signif-
icant changes in its physical structure, with increasing rate

of renewable penetration, as well as increasing dimension and
complexity of power systems models [1]. In this new environ-
ment, where the power system flexibility [2] is a valuable asset,
the concepts of coherency and model reduction can be useful
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to understand power system dynamic behaviors and develop
advanced applications such as controlled islanding [3]–[8],
wide-area control and protection [9]–[17].

On the other hand, thanks to the advance of the wide-area
monitoring systems (WAMS), power system operators can an-
alyze large amounts of data, potentially a valuable source of
information about the power system dynamics. Of this manner,
the easy access to data is changing power system analysis and de-
manding more effective tools to extract information from them.

A. State-of-The-Art

The concept of coherency proposed in [18] develops the slow
modes analysis (the ones concerning inter-area oscillations) of
the linearized inertial aggregated model which groups generators
by considering the equivalent machine angle, with machines
internal nodes connected by infinite admittances. In [13], the
method in [18] is further advanced by adjusting the inertia
aggregated model of a cluster, since this corrects the admittance
connecting the internal nodes of machines by the fast modes
of the model (local oscillating modes), improving the represen-
tation of the system. These model-based approaches (MBAs)
have been extensively explored in the literature and their recent
advances are reported in [14]. Despite these strong advances,
MBAs rely on the linearized model of a high-dimensional and
complex nonlinear system, resulting that there are no guarantees
for employing this concept in power system contingencies that
may change the system structure and excite nonlinear dynamics.
Thus, MBAs may not be useful for online application in modern
power systems [19], [20].

Conversely, with the advent of WAMS, there is a clear need
to explore the use of PMU measurements (voltage phase angle
and frequency) to identify generator coherency. Where the new
paradigm is not to rely on power system models (parameters and
topology), but rather make use of the power system measured
responses. These data-driven methods (DDMs) can be divided
into three main approaches: temporal signal clustering [6], [19]–
[28], oscillatory mode detection [29]–[34] and machine-learning
(ML) techniques [35], [36].

Regarding the temporal signal clustering approaches, an in-
dependent component analysis method using the rotor speed and
angle of synchronous generators to determine their clusters, is
proposed in [22]. Meanwhile, the authors in [19], [23] employ
frequency deviation signals within a two step method that iden-
tifies clusters of generators by a cosine correlation index and ag-
gregates the remaining buses into the coherent clusters. In [24],
authors present an average correlation coefficient for clustering
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which is focused on an improvement of the Euclidean norm
in combination with a threshold-defined heuristic algorithm.
The Pearson product-moment correlation coefficient (PPCC) is
introduced in [25] by defining a distance metric among PMU
voltage angles and applying a hierarchical density-based spatial
clustering of applications with noise (HDBSCAN) to select the
clusters. Other investigations explore several distance metrics
obtained from a special device to estimate rotor speeds and inter-
nal angles of generators; such metrics are ranked and processed
by means of the criteria importance through inter-criteria cor-
relation (CRITIC) and the kernel principal component analysis
(KPCA) [6], [26], [27]. These processed indexes are then clus-
tered using agglomerative hierarchical clustering (AHC), spec-
tral clustering and affinity propagation (AP) methods. In [28], the
use of PMU measurements and dynamic time warping (DTW)
method form a strategy to identify coherency online from the
rotor angles’ information. Likewise, the work in [20] tackles
a new data-driven methodology for slow-coherency clustering
of generators, hinged on heuristically determined composition
of cosine dissimilarity and Minckowski distance among PMU
measurements of frequencies at the generator terminal buses.
The clustering process itself is performed using the affinity-
propagation technique.

In the second approach, recent works propose the use of
oscillatory mode extraction techniques, such as the Koopman
method [29], [37], to identify the coherency of generators.
In [30], a data-driven method that estimates the system’s modes
using angle measurements from all buses is proposed by per-
forming a spectral analysis using the Koopman operator to
identify the dominant modes and clustering with the K-means
method. Also, the work in [31] extracts the modes of WAMS
measurements applying the Koopman operator and then applies
spectral analysis to identify coherent groups of generators with
high penetration of non-synchronous generation. Meanwhile,
the authors in [32] employ a linear quadratic regulator (LQR) and
Kalman filtering applied to synchrophasor measurements to es-
timate space-state variables for determining oscillations among
areas and apply to those clustered areas in controlled islanding
schemes. Likewise, the authors from [33] extract the modes
using Taylor-Fourier Transform and cluster the generators using
hierarchical agglomerative technique, with Elbow’s method to
improve the initial guess for the number of clusters. In [34], a
fast frequency domain decomposition (FFDD) modal analysis
method is applied to real measurements of oscillation moni-
toring, from the Réseau de Transport d’Électricité (RTE) power
system, and the clustering is processed by the DBSCAN method.

Finally, ML approaches rely on large data sets to train the
classifiers. In [35], bus angle and frequency measurements from
PMUs are used to determine a dissimilarity rms-coherency crite-
rion index between buses, for each disturbance event, forming a
matrix of dissimilarity indexes. Gathering matrices from several
events, a probability of similarity among buses is constructed
and applied to a fuzzy medoids algorithm (FCMdd) to perform
the clustering. In [36], the coherency detection is applied to
unstable simulated transient events, which are first classified
using binary labeling. Once, a relative large number of cases is
simulated, hierarchical clustering is applied to group formation.
Then, different classification techniques (decision tree, ensem-
ble decision tree and multi-class support vector machine) are
explored to identify the unstable responses (unstable groups).

Despite all advantages enclose in the three aforementioned
approaches, there are some gaps to be fulfilled. The main lim-
itations of the temporal signal clustering methods are usually
associated with an empirical threshold that must be tuned, which
may have to be re-tuned for anomalous events by expert users
with a previous knowledge of the system dynamic behavior.
Regarding the oscillatory mode extraction methods, the authors
in [20] claim that these techniques are often affected by the
inaccuracies of the mode estimation and the high computational
burden required to process long observation windows. Finally,
the key requirement for the success of machine-learning ap-
proaches is to have a representative database used in the training
process to prevent over-fitting problems. This accuracy crucially
depends on the quantity and quality of the available data as
well as the time consuming task of manually labeling a huge
amount of events. The training process of machine-learning
methods also involves a large computational burden and manual
configuration of hyper-parameters that must be retrained after
possible classification failures. Furthermore, the interpretability
may also be a limitation for deep learning methods when they
are applied to critical tasks.

B. Problem Statement

Nowadays, the power system industry has been experiencing
a major challenge since synchronous machines and controllers
are replaced by inverter-based sources (IBS). The effects of the
integration of a large amount of IBS, whose regulation and
interaction with the rest of the system is still to be fully un-
derstood, may impact the identification of groups depending on
the state of the system and location of the disturbance [19], [20],
[26], [31]. To develop fully data-driven applications capable to
process large amount of collected PMU data, it is helpful to un-
derstand the effects of IBS on coherency identification, islanding
detection and model reduction of power systems. Table I shows
a comparison of the required information/assumptions by the
methods, this is marked by X and additional information that
some of the methods can provide, besides machine clustering,
such as islanding detection, marked by checkmark �, when
compared with the method proposed here. It is important to
point out that, to the authors’ best understanding, some of the
methods may be able to provide additional information, but they
do not present any comment or results to that regard.

In this work, we introduce the concept and explore the ad-
vantages of a non-parametric statistical method for coherency
tracking. This method does not have the constraints that the
parametric methods impose for their application, which requires
a previous knowledge about the process and dataset (popula-
tion). This clearly reduces the effort to apply and understand the
proposed method, improving its use in real world applications.

C. Contributions

The main contribution in this work is related to the extraction
of statistical characteristics exclusively from the data, without
any assumption of the distribution of the data. This idea es-
tablishes a new paradigm for data handling, as the number of
clusters is automatically found from each data-set, regardless
of parameter tuning like most data-driven methods. Further, the
statistical information extracted from the data is supported math-
ematically. The method, typicality-based data analysis (TDA),
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TABLE I
COMPARISON OF REQUIREMENTS FOR COHERENCY METHODS

is applied to distances between frequency dynamic responses
by employing the methodology in [39]. It is also customized
to be implemented along with synchrophasor measurements
from dynamic transient responses for the detection of power
system islands by performing a clustering process. The main
contributions are stated as follows: (i) this is a fully data-driven
method which means that there is no necessity to determine
the optimal number of clusters or initial guesses of centroids to
initialize the grouping algorithm; (ii) contrary to conventional
parametric statistical methods that must rely on probability
density functions (PDF), assuming a set of fixed parameters
that determine a probability model, non-parametric methods do
not require previous knowledge of the process and the dataset
(population) being handled; (iii) there is no necessity to man-
ually label all the huge amounts of training data to build a
representative database to be used in a training process aiming to
prevent over-fitting problems; (iv) the mathematical background
of the proposed approach is clear, allowing understanding of
the results; (v) the method is capable of detecting the islanding
conditions of the system and is robust to noisy measurements;
(vi) due to its low computational complexity, it is suitable for
transitory period applications; and (vii) the method is tested and
validated using real PMU measurements from a large power
system.

II. FUNDAMENTALS

A. Coherency

Coherent trajectories are defined as machines with responses
indistinguishable from each other, i.e., the difference between

their angles (θ) or frequencies (f ), remains very small [13]:

θk(t)− θj(t) ≤ γ (1)

where k and j are generator buses, γ is an arbitrarily user-defined
value for the maximum divergence between any two responses
within an area. This method can be applied to either f or θ, since
the first is a derivation of the second one, as stated by

Δfi|t+Δt =
1

ω0

θi|t+Δt − θi|t
Δt

(2)

where Δfi|t+Δt stands for the frequency deviation (in Hz) of
the i-th bus at the time step Δt, ω0 = 2πf0, f0 is the system
nominal frequency in Hz, and θi is the i-th bus voltage angle.
Since Δt and ω0 are constant in (2), we can regroup them as
a constant η and considering θi|t+Δt − θi|t = Δθi|t+Δt, such
that Δfi becomes:

Δfi|t+Δt = ηΔθi|t+Δt (3)

where η = 1/(ω0Δt).

B. The Euclidean Norm

A norm maps vectors onto a scalar to represent the distance
between two time-domain responses. The Euclidean norm is
used since is considered stable, i.e., it is reliable to the adjust-
ments of window lengths when it is compared with the absolute
norm, which is considered more robust to outliers. Meanwhile,
the outlier robustness can be readily overcome by filtering [40].
Given two points of measurement k and j for every time instant
t, the distance ddk,j(t) between their frequencies is expressed
by [41]

ddk,j(t) = [fk(t)− fj(t)]
2 (4)
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where ddk,j(t) is squared since the value of fk(t)− fj(t) may
be negative. The Euclidean norm is a distance metric that satisfies
all the following conditions [42]: i) non-negativity: ddk,j ≥ 0;
ii) identity of indiscernible: ddk,j = 0 ⇐⇒ k = j; iii) symme-
try: ddk,j = ddj,k; and iv) triangle inequality: ddk,h + ddj,h ≥
ddk,j . Metrics such as the cosine similarity do not attain such
conditions. This is important because, with the Euclidean norm,
we are able to represent the distance among two responses by a
scalar and retain the signal mathematical properties.

Additionally, the nominal frequency f0 is removed, so that
ddk,j(t) is calculated as

ddk,j(t)

= [(fk(t)− f0)− (fj(t)− f0)]
2 = [Δfk(t)−Δfj(t)]

2

(5)

Next, the square root of the sum of all values for a time window
T is computed, T = t0, . . . , tf , where t0 is the moment of the
disturbance, and tf corresponds to the time window ending. The
square root of the sum of ddk,j(t) is calculated projecting it onto
a matrix of scalar quantities ν(k, j), with each entry representing
the distance between points of measurements k and j, expressed
as [41]

ν(k, j) =

√√√√
tf∑

t=t0

[Δfk(t)−Δfj(t)]2 (6)

For every bus k, νk is a 1×N vector, corresponding to the
distances between the dynamic response from bus k to the other
buses, where N is the total number of buses with available
measurement.

C. The Distance Metric: Correlation

The vector of scalar quantities νk represents the norm of the
distance from bus k to the other buses, making up a data point
in the data-set to be used by the TDA method. The proposed
method requires a measured quantity between the data points in
the set, defined by the user [39]. Therefore, the correlation ρk,j
between two data points in the vector ν(k, j) is defined by

ρk,j = corr(νk, νj) =
cov(νk, νj)

σνk
σνj

(7)

where corr(νk, νj) indicates the correlation between the dis-
tances of busesk and j, distributed inRN , cov(νk, νj) represents
the covariance between the distances νk and νj , and σ is the
standard deviation.

III. TYPICALITY-BASED DATA ANALYSIS

In this section, the fundamentals and definitions of a non-
parametric statistical method [39] applied to the coherency
tracking are presented. This is a distribution free method that is
exclusively based on ensemble statistical properties of the data
derived entirely from the experimental discrete observations.
These properties are defined as follows [39].

A. Cumulative Proximity

In graph (networks) theory, a measure of centrality is defined
as the inverse of the so-called farness which is a sum of distances

from one point to all other points [43]. From [39], the cumulative
proximity is defined as a squared form of the farness:

qN (νk) =

N∑
j=1

ρk,j ; νk ∈ νN (8)

Cumulative proximity is an important association measure that
is empirically derived from the observed data without making
any prior assumptions about their generation model, and plays
a fundamental role in deriving other statistical properties for the
TDA method [39].

B. Standardized Eccentricity

This quantity is defined within the TDA method as a nor-
malized cumulative proximity by half of the average cumulative
proximity:

εN (νk) =
2qN (νk)

1
N

∑N
j=1 qNqN (νj)

(9)

where the coefficient two is included to compensate distance
duplication in the denominator. If ε is divided by the amount of
data N , then the non-standard eccentricity ξ becomes ξN (νk) =
1
N εN (νk), leading to the following bounds for the eccentricity
value:

0 ≤ ξN (νk) < 1 (10)

This property makes up a significant measure of the ensemble
property related to the distribution tail and it is also empirically
derived from the observed data. It plays an important role in
anomaly detection, analysis of rare events, as well as for the
estimation of the typicality [39]. By considering the Chebyshev
inequality [44] that indicates the probability of data being outlier
(a data sample ν is more than nσ, where σ denotes the standard
deviation, distance away from the mean in a given distribution)
and applying the standard eccentricity to it, the TDA version of
the Chebyshev inequality becomes [39]:

P (εN (νk) ≤ n2 + 1) ≥ 1− 1

n2
(11)

By expressing the Chebyshev inequality by means of the stan-
dard eccentricity, this allows detecting anomalies in data. For
instance, if the standardized eccentricity εN (ν) > 10, then ν
exceeds the 3σ limitation, this event can be categorized as an
anomaly. This information is significant for boundary data, since
it minimizes the probability of data miss-location in wrong
clusters.

C. Discrete Local Density

This property is defined as the inverse of the standardized
eccentricity [39], becoming

DN (νk) =

∑N
j=1 qN (νj)

2NqN (νk)
, with i = 1, 2, . . . , N. (12)

D. Discrete Typicality

This quantity is established as the normalized density. It
quantifies how common, or typical, a value is within the data
set under study. As comparison, the typicality can be seen as a
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probability equivalent of a given random variable that takes the
value of the measured point. The typicality is obtained from
the data set instead of being assigned by model fitting of a
probability mass function (PMF), and it is given by [39]

τk(νk) =
DN (νk)∑N
j=1 DN (νj)

=
q−1N (νk)∑N
j=1 q

−1
N (νj)

(13)

The discrete typicality resembles the traditional unimodal PMF,
being constructed from the data set and excluding the possibility
of non-feasible values that may result in consequence of fitting
to PMF [39]. In the following section, the proposed method is
applied to frequency measurements.

E. Proof of the Clustering Concept of TDA

Let’s assume a system with B buses and their re-
spective frequency measurements that are converted into
a scalar by (6), where NB = ν1, . . . , νn, . . . , νB , ν1 =
ν(1, 1), ν(1, 2), . . . , ν(1, B). The distance metric of correlation
among points given by ρ1,2. Once the TDA is applied, the initial
set points NB is divided into clusters of points (α, β, . . . , c),
where c is the number of clusters found by the TDA method.
Let α be a cluster of buses, whose Euclidean norms from NB

are denoted by

Nα = {νi, νk, . . . , νa}
and their distances with respect to all buses are given by

Pα = {ρi, ρk, . . . , ρa}
Then, their eccentricities are expressed by

Eα = {εi, εk, . . . , εa}
And their typicalities are symbolized by

Tα = {τi, τk, . . . , τa}
where Tα and Pα are used to determine the closest points in
the data-set distribution, as shown in Algorithm 1. Once, a
cluster is found, the mean μα(ν) and standard deviation σα(ν)
are calculated for the cluster. ρ∗α is the minimal correlation, i.e.,
maximum distance in cluster α.

The probability of the point ν∗α ofα being less than 3σα distant
from μα of cluster α, i.e., bus α∗ belonging to cluster α, can be
seen by its eccentricity ε∗α, when we apply ε∗α to (11), with respect
to the cluster standard deviation

P
(
ε ∗α (ν∗α) ≤ 3σ2

α + 1
) ≥ 1− 1

3σ2
α

(14)

If we assume a normalized standard deviation of σα = 1, then
we get

P (ε ∗α (ν∗α) ≤ 10) ≥ 8

9
(15)

which is a conservative estimate since the Chebyshev inequality
does not assume any prior information about the distribution
of the data. For instance, the usual assumption for normal
distribution in our case, the probability of being under 3σ of
the mean is 99.7%. As it will be shown in the next section,
the construction of the algorithm allocates each point ν to the
cluster whose highest typicality point ντ has the closest distance
ρ to ν. This in turns means that ν∗α has the highest probability of

Fig. 1. Clustering validity example.

belonging to clusterα, of all clusters. This is further exemplified
in Fig. 1, where a visual representation of the statistical proof and
algorithmic construction of the clusters is depicted. This will be
also discussed in detail in the next section. Such construction and
mathematical proof indicate the meaningfulness of the clustering
produced by the TDA method.

IV. TDA APPLICATION FOR COHERENCY DETECTION

A. Stage I. Pre-Processing

Due to non-electromechanical phenomena, the voltage angles
may present spikes known as phase-shifts [45], which are unre-
alistic for machines rotor dynamics and bus frequencies overall.
For this reason, a moving median filter is the first step in the
pre-processing stage. Additionally, any PMU that reports data
quality issues per flags STAT [46] (bits 6 to 15), is discarded. Er-
rors in measurement that bring bias to the reported synchropha-
sors must be addressed by the state estimation and are out of the
scope of this work. However, it is noteworthy to mention that a
constant bias in the angle measurements would not impact the
frequency since this is estimated regarding the angle variation.
This stage comprises: (i) outlier removal with the movmedian
Matlab function (this is applied using a 5-sample window); (ii)
DC offset removal, i.e., difference from 60 Hz Δf is computed;
the resulting signal is detrended with the dynamics separation
algorithm [47], which is of great importance particularly in
events such as generation trips, where the steady state component
of the signal changes; (iii) computation of the Euclidean norm

using (6), that is, ν(k, j) =
√∑

[dd2k,j ] [41]. This norm maps

vectors onto scalars in order to represent time-domain responses
in a scalar space distribution (reducing the dimension of the
data-set). At the end of the pre-processing stage, a data set is
generated in RN , that is, the dimensional space of the data set
is equal to the number of measurement points (ideally, equal
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to the number of buses), with points νi = [νi,1, νi,2, . . ., νi,K ]T ,
i = 1, 2, . . ., N , where each value in vector νi is a norm of bus
i to another bus, and νi denotes the coordinates of bus i in such
space.

B. Stage II. Metric (Correlation) Computation

In this investigation, the correlation ρ is adopted as a dis-
tance metric, being implemented as exhibits lines 4 to 8 of
Algorithm 1.

C. Stage III. Properties Calculation

The TDA method clusters data using the typicality of each
data point in the data set, using ρ as a metric. To reach the
typicality value, the properties provided in the previous section
are calculated for a given set of data points νk: the cumulative
proximity qN (νK) is computed using (8); the standardized ec-
centricity εN (νk) is quantified using (9) (which is an important
measure for data-handling correction, as εN (νk)must be a value
between 0 and 1); the discrete local density DN (νk) is obtained
from (12).

Finally, the typicality τk(νk) of νk is calculated using (13)
and taking into account the following properties: (i) the sum of
the typicalities for all data points τk(νk) is 1; (ii) all values of τk
are between 0 and 1; and (iii) no prior assumptions of the data
model are gathered. This is indicated through lines 10 to 12 of
Algorithm 1.

D. Stage IV. Typicality Ranking

Once all τk are computed, the one with the maximum value is
tagged as the global typicality τD∗N and placed in the first element
of the vector rankedτ . A ranking of typicalities is accomplished
as follows: the data point ν2, where the superscript 2 indicates
the position in the ranking of typicalities with the highest metric
ρ to the data point of the global typicality τD∗N , and its τ2k is
assigned next in the vector rankedτ . Then, the data point ν3

with the highest metric ρ to the data point ν2 of the typicality τ2N ,
and its τ3k arrayed next in the vector rankedτ . This is recursively
performed until all typicalities are ranked, as pointed out in lines
15 to 19 of Algorithm 1.

E. Stage V. Cluster Formation and Filtering

The typicalities’ peaks are found locating the points ν∗k as
initial cloud centers. This is carried out employing lines 20-26 of
Algorithm 1. Once all cloud centers are located, the remaining
data points νk are assigned to the center’s cluster, in which it
has the highest correlation ρ. This is conveyed in Algorithm 1
from lines 28 to 30. For all clusters, the mean (Clusterμ)
and deviation (Clusterσ) of data points are computed by lines
34 to 37 in Algorithm 1. Finally, the clusters are filtered by
clustering all clouds that are close together and recalculating
their statistical properties. This is performed by lines 39 to
42 of Algorithm 1 until the number of clusters remains un-
changed. The final clusters correspond to the areas found using
the TDA method. Here, it is important to point out that, by using
the Euclidean distance among the measured frequency devia-
tions, the TDA method implicitly takes into account the inertia
of the generation units in the system as the typicality property of

the method. All the process performed by Algorithm 1 takes
place in a single step manner, unlike the approach in [23],
where the constant of neighborhood defined by the user must
be changed for non-generator buses and supposes uniform in-
ertia distribution. Other methods assume that the center of the
inertia frequency deviation vector considers equal weights to
all generators, unlike the TDA method that implicitly regards
the inertia of each generator, since the Euclidean distance of
frequencies is greatly influenced by the inertia of the areas.

V. PERFORMANCE OF THE TYPICALITY-BASED DATA ANALYSIS

The TDA method is now applied to the New England 68-bus
and 16-machine test system (S1) [48] and to real measurements
from FNET/GridEye WAMS [49] for the Eastern Interconnec-
tion (S2).

The nonlinear simulations that provide the input data for
the TDA method obtained from the power system toolbox
(PST) [50], [51], assuming the availability of voltage an-
gle/frequency responses at all buses. All simulations are carried
out for 20 s with a time-step of 1 ms. The time window consid-
ered for calculation of νk in all cases is of 10s after disturbance
takes place, as in [23]. The responses are decimated to 120 Hz,
complying with the IEEE synchrophasor standard [46], to the
simulated system S1. The transitory period of the response is
useful for the detection of islanding condition; meanwhile, the
transient period allows the correct slow-coherency detection.
Additionally, the method was explored in S1 for measurements
with rates of 60 and 30 Hz, displaying similar results. The
measurements from S2 are by default 10 Hz.

A. 68-Bus System (S1) - Comparison to DCD

The 68-bus and 16-machine system S1 is a reduced order
equivalent of the interconnected New England transmission
system (NETS) and New York power system (NYPS). All
generators are represented by a sixth order model equipped with
automatic voltage regulators (AVRs), and all loads are assumed
as constant impedance [52]. Cases S1.C1 and S1.C2 intend to
compare the areas found with those ones in [23], and illustrate
the advantages against MBAs, since it detects islands and areas
not connected, which is of great interest for wide-area control
purposes. The noise tolerance is assessed including tests with
noisy signals up to 30 dB of signal-to-noise ratio (SNR) for
Cases S1.C1 and S1.C2, but they are not displayed for the sake
of brevity, since the TDA method is able to find the same areas.

1) Application on Case S1.C1: the first case is a three-phase
fault at bus 27 in Fig. 4, at t = 0.5 s, lasting 5 cycles.

The result of Stage I is a data set of the Euclidean norms νk in
R68, with number of points N = 68. In Stage II, each point νk
have its correlation metric ρk to every other point νj , forming a
metric vector with the same dimension. The correlations among
the norms of all signals from S1.C1 are projected onto the heat
map in Fig. 2, where the strong correlations are represented in
brown color. The main challenge now is to compute how the
groups of high correlation buses can be formed into clusters.

In the proposed method, the clusters are obtained without any
arbitrary cutoff constant using the TDA properties. The main
result is the vector of typicalities for every point νk, which
is depicted in Fig. 3(a) (before ranking). The high values of

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on April 07,2023 at 02:51:58 UTC from IEEE Xplore.  Restrictions apply. 



394 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 37, NO. 1, JANUARY 2022

Algorithm 1 TDA implementation for PMU dynamic re-
sponse

1: Input: Let νk, k = 1, . . . N (data points) vector of
scalar Euclidean norms between frequencies
responses, with N being the number of PMUs.

2: Output: A set of coherent areas with generators and
non-generator buses (Clusters).

3: Initialization: t0, tf , set of correlation metrics ρk,j
4: for k=1,k++ do
5: for j=1,j++ do
6: ρk,j ← cov(νk,νj)

σkσj
νk, νj ∈ νN

7: end for
8: end for
9: TDA properties computation

10: Cumulative proximity: qN (νk)←
∑N

j=1 ρk,j ;

11: Discrete local density: DN (νk)←
∑N

j=1 qN (νj)

2NqN (νk)

12: Discrete typicality: τk(νk)← DN (νk)∑N
j=1 DN (νj)

13: Global typicality: τD∗
N ← max(τD

i ) i = 1, . . . , N
14: Starting from data point (ν(τD∗N )), rank of

typicalities (τDk ) for all data points (νk) based on
the correlation metric (ρk,j):

15: for k=2, k++ do
16: for j=1, j++ do
17: rankedτ (k)← τj(max(ρνk−1,j))
18: end for
19: end for
20: Finding data centers and data clouds: Find peaks of

rankedτ (k):
21: for k=1, k++ do
22: if [τD(ν(k − 1)) <

τD(ν(k))] &amp; [τD(ν(k)) > τD(ν(k + 1))]
then

23: νk is a local maximum
24: νk∗ ← νk cloud center vector
25: end if
26: end for
27: Forming data clouds around νk∗, considering ρ:
28: for k=1, k++, k 	= νk∗ do
29: Cluster(k)← argmaxk(ρ(ν∗, νk))
30: end for
31: Filtering data clouds:
32: while size(Cluster) is unchangeable do
33: Computing statistical of clouds:
34: for k=1, k++ do
35: Clusterμ(k)← μ(ρν,ν∗)
36: Clusterσ(k)← σ(ρν,ν∗)
37: end for
38: Filtering the data clouds using Clusterμ and

Clusterσ and τ :
39: if

[||μi
N − μj

N || ≤ 2σi
N ]&amp; [τDN (μi

N ) < τDN (μj
N )]

then
40: Cluster(j)← [Cluster(j);Cluster(i)]
41: end if
42: end while
43: return Clusters

Fig. 2. Correlation map for Case S1.C1, for TDA - Stage II.

Fig. 3. Case S1.C1: Stages III and IV of the TDA Algorithm 1.

typicalities indicate that these buses consist of representative
frequency responses. Otherwise, these buses are the ones with
minor deviations when compared to the other ones in the same
data set. It is also a clear indication that these buses have a
strong connection within the measured buses. For example,
Buses 10–13, 30, 31, 36, 48, 49, 53 and 61, with high typicality
values, are part of the meshed area (NYPS area).

Next, in Stage IV, these typicalities values must be ranked
starting from the global typicality τD∗N (maximum typicality
value) according to the correlation illustrated in the Fig. 3(b).
Where the peaks are the initial centers for each cluster that
must be processed using Algorithm 1 (line 24). In Fig. 3(b),
the x− axis refers to the position of τ in the ranked vector
rankedτ (k). At Stage V, the TDA algorithm detects the peaks
in the ranked vector to form the initial clusters around those
peaks. A filtering process is carried out regarding the mean
and standard deviation from the clusters around the peaks. This
filtering process takes place until the numbers of clusters does
not change. In this case, the algorithm found the solution in
three iterations. The final clusters of typicalities are depicted in
Fig. 3(c), where the x− axis still displays the buses ranked by
the correlation metric.

The resulting seven clusters (areas) are presented in Ta-
ble II and illustrated in Fig. 4. For comparison purposes with
both DDMs and MBAs, Table II summarizes the areas found
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TABLE II
AREAS IDENTIFIED BY THE TDA METHOD FOR CASE S1.C1

Fig. 4. Areas by the TDA method for Case S1.C1.

by [23], [13], and applying the AP algorithm [53] for the same
correlation metric, ρ. The results from [13] are the same for all
case, since it does not consider events, so it will be shown only
in Table II.

Fig. 3(c) illustrates the ranked typicalities, demonstrating that
the TDA method exhibits a fine definition of clusters, separating
Area 1 from [23] into Areas 5, 6 and 7, shown in Fig. 4. This
shows a stronger effect of local modes in the NETS system,
which can only be captured if the window length considers the
initial transitory period of the frequency response. This effect is
not captured by traditional slow-coherency methods. The TDA
approach also includes tie-line buses from NETS to NYPS into
Area 4, which has the generators electrically closer to NYPS,
whereas in [23] those buses get separated into Areas 1 and 5.

However, looking at the closeness in the responses of buses
from Areas 6 and 7 in Fig. 5, we can see that TDA is sensitive
to very small variations.

This additional information may be used for islanding control
schemes purposes, as Area 6 is only comprised of load buses.
Such information would not be achievable with MBAs since
they construct areas with the consideration that every area has
at least one generator. Also, DCD method from [23] would also

Fig. 5. Frequency signals of Areas 6 and 7 during transitory period.

not be able to detect such an area as it starts its construction of
areas by the generators.

It is very interesting to remark that the TDA eccentricity ε
is calculated using only the data and a distance metric, in this
case, the correlation ρ. However, with this value (ε) and the first
two moments, μ(ν) and σ(ν), calculated once TDA clusters
the buses, we can address how likely a point in the data-set is of
belonging to the cluster, using the proof in Section III.E. In other
words, we can attest that the selection of points, i.e., the area,
by the TDA method from the data-set distribution is valid, using
only the data information and the data distribution information,
without the definition of any constant or limit.

To explore the meaning of the areas (clusters) provided by
TDA, we show in Table III a summary of the distribution and
distance metrics where the mean is adopted as the center of
the cluster, and the typicality τD(μ) of the center of the area
calculated using (13), where Area 2 and Area 7 exhibit the
lower and higher peak of the local distributions. Notice that these
values, i.e., μ and τD(μ), are equivalent to the mean of a PDF
distribution and its peak. Notice that this is extracted exclusively
from the data and the distance metric, without any a priori
assumption of the PDF. The cluster average ρ(ν) shows that
Area 7 is the most tightly coherent group, since it has the highest
correlation average between buses. The largest value of the
maximum deviation Δρmax is found in Area 1 and the smallest
one is located in Area 7, showing that these are respectively
the least and most coherent areas, in accordance with ρ(ν).
The bus associated with the maximum deviation is displayed
in column 6. To prove the correct grouping, the eccentricity ε
and standard deviationσ(ν), measures are calculated in columns
7 and 8, resulting in the ratio between eccentricity and standard
deviation, which shows the conservative probability of the least
coherent buses being inside the clusters, due to this ratio being
less than 3σ(ν) + 1. This probability is higher, in reality. The
overall average correlation ρall indicates that Areas 1 and 2 are
the least coherent with the system. Summarizing the results in
Table III, these statistical measures represent a proper clustering
pattern, confirming that the clusters provided by the method are
correct.

2) Application on Case S1.C2: In this case, a three-phase
fault is applied at bus 33 at t = 0.5 s and cleared after 5 cycles.
The TDA method finds 7 areas which are displayed in Table V
and illustrated in Fig. 6. Table V also shows the areas for this case
using the DCD method from [23] for comparison. We can see
that TDA is able to find additional important local oscillations
when the compared method fails to do so.
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TABLE III
CORRELATION STATISTICS FOR CASE 1 (S1.C1)

TABLE IV
CLUSTERING RESULTS WITH DIFFERENT TIME WINDOWS

TABLE V
AREAS IDENTIFIED BY THE TDA METHOD, CASE S1.C2

Fig. 6. Areas by the TDA method for Case S1.C2.

It is noteworthy to remark that the severity of the fault caused
the isolation of the closest generator, i.e., Generator 11, and
its closest load bus, bus 33, showing the method captures local
modes whereas slow-coherency methods would not, as can be
seen in Table V areas provided by TDA, slow-coherency, DCD

Fig. 7. Areas 2 and 7 generators responses for Case S1.C2.

from [23] and the AP algorithm from [53] for the correlation met-
rics ρ. This separation can also be seen in Fig. 7, in the frequency
response of generators 11, 12 and 13, which are traditionally
clustered together. Fig. 7 shows that the TDA method makes the
appropriate separation, where Generator 11 gets isolated. This
fact points out a great advantage of the proposal when compared
with MBAs, since these methods would not be able to detect the
isolation of this generator.

With this information, operators are able to detect islands in
the system that can be intentionally produced aiming to prevent
cascading events leading up to blackouts. From Tables II and V
and Figs. 4 and 6, we can see the potential of the method for
detecting islanding conditions, despite no lines are tripped in
those simulations. This information is very valuable for the
operator since it can be useful for determining possible parts
of the system that can get isolated, without generation (like
Area 6 in Case 1 and part of Area 3 in Case 2). It can also be
used as an indication of suitable intentional islanding schemes,
where Areas 3 and 7 in Case 1, and Areas 5 and 7 in Case 2
could become self-sustained in case of islanding, which can be
required for preventing cascading events.

Since the islanding and protection phenomena require re-
sponses in faster times, the TDA method is also examined
with smaller time windows. It is important to emphasize that
a minimal window of 10 cycles must be observed considering
the length of the fault (5 cycles) and initial transients. The
method is able to detect the isolation of Generator 11 with only
15 cycles, with an average processing time of 24.6 ms, providing
the detection of separation in less than a second after the fault.
For the base window length of 10 s, we note that Areas 3 and 6 in
Fig. 6 are not consecutive, which is also valuable information
for deciding islanding control schemes.
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TABLE VI
WPPS FOR S1.C3W

Table IV depicts that the method is able to address the same
areas for window lengths starting at 3s, for Case 2. For smaller
time windows, since the response is dominated by faster modes
and more damped modes, the number of areas is greater, indicat-
ing mostly local phenomena, such as islanding. It is important
to note that for longer windows, the more important fast modes
still show in the Areas, such as the isolation of Generator 11.
Table IV also shows that the TDA method finds the same results
to the three considered sampling rates, which is the case for all
simulations, despite of the window length.

B. Application on Case S1.C1, With Presence of Wind
Generation (S1.C3w)

The fault in Case S1.C1 is now applied to a wind gen-
eration scenario (S1.C3w), enabling the investigation of how
non-synchronous generation affects the coherence of the system
and the TDA method. Thus, the total load is increased by 20%,
homogeneously at all load buses as in [19]. A 13.3% of the
additional load is supplied by wind power plants (WPPs), located
in four new buses, shown in Table VI. An additional 6.7%
generation is distributed by the synchronous generators, from
New England system. The choice for installation of the WPPs
takes into consideration the concentration of generators (for
WPP at bus 121), load buses (for the WPPs at buses 127 and 144),
and tie-lines in the case of the third WPP, at bus 153. The new
generators are comprised of doubly-fed induction generators
(Type-3 wind generators) equivalent models, with 30% of power
output injected via inverters with voltage regulation and unitary
power factor. The 10% additional generation is equally shared
by all four WPPs.

It is noteworthy to remark that, while the increase in load is
met by the non-synchronous generation, the transmission system
remains unchanged, with the exception of the lines connecting
the WPPs to the system. This alters the stability of the system,
as the transmission lines may become overloaded, i.e., the poles
of the system can come closer to the jω-axis in the s plane.

Once the initial condition is calculated for the new config-
uration of the system, the same three-phase fault is applied at
bus 27. The frequency responses of the four WPPs is shown in
Fig. 8(a), for WPP 127 with zoom after the initial frequency
dip for better observation of oscillations, and 8(b) for the three
remaining WPPs.

Note that the response from the WPP closer to the fault has
a severe frequency dip at the moment of disturbance, due to its
closeness to the fault. This behavior is also observed in WPP
121. Also note that the main difference between the responses
of WPP 144 and 153 is in the transitory period, which appears
in the resulting areas shown next.

The TDA method is applied following the same configura-
tions, i.e., window length, sampling frequency, etc. The areas

Fig. 8. WPPs frequency responses to fault at bus 27.

TABLE VII
AREAS IDENTIFIED BY THE TDA METHOD, CASE S1.C3W

found by the method are displayed in Table VII, where the areas
for the base case are reproduced for better visualization.

As mentioned before, the addition of non-synchronous gener-
ation influences the coherency of areas. 12 areas are found, that
is, five additional areas, where it can be seen that Area 1 from
Case S1.C1 is split into Areas 2 and 3 in Case S1.C3w. Each of
these areas has the addition of a WPP, i.e., the WPPs contribute to
the coherency of these groups. Additionally, Area 7 from Case
S1.C1 is also split into Areas 8 and 9 for Case S1.C3w. The
last area from Case S1.C1 that was split was Area 2, which got
separated into Areas 10, 11 and 12, each with a single equivalent
generator. The impact of the presence of WPPs can clearly be
seen in Fig. 9, where the frequency responses of the generators
from Areas 1, 2 and 7 in Case S1.C1 are plotted as if being
grouped in the original case. It is clear that these generators no
longer oscillate together, in the new configuration of the system,
where WPPs are introduced.

The final additional area, however, is composed only of
the new WPP at bus 127. This is reasonable since the non-
synchronous generator is close to the fault, and has a degree
of isolation from the system through its inverter. The area
from Generator 9 gained one bus (the fault bus 27), due to its
interaction with the WPP. Also, Area 6 from Case S1.C1, which
did not possess any generator, gained two new buses (37 and 67)
and WPP 121, all being close to the fault. Particularly, these two
last effects, i.e., the isolation of WPP 127 and enlargement of the
Area 6 show the effect of WPP in the power system, and also,
the ability of the proposed method in capturing such events.
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Fig. 9. Generators from Areas 1, 2 and 7 of Case S1C1 in Case S1.C3w.

Fig. 10. Generator 9 frequency response: connected and islanded with speed
regulator.

We can observe that, as seen in [19], [26], the addition of
renewable generation to the system may reduce the damping
of oscillations in the system, separating further the areas. This
separation is also a consequence of the faster modes added by
these plants, which cannot be observed if the transitory response
is omitted. However, our estimation of the areas is done without
user defined threshold constant γ for clustering as in [19], or
complex algorithms like in [26].

C. Application on Case S1.C4i - Islanding Detection

To emphasize the capability of the method in detecting is-
landing conditions, an additional test is made. Case S1.C1 is run
again, with the lines between buses 28 and 26 and between buses
29 and 26 open, 100 ms after the fault is cleared. This effectively
islands Area 3, as those are the only connections of this area to
the rest of the system.

In the pre-fault condition of the system, Generator 9 is inject-
ing 800 MW in the system, and the loads at buses 28 and 29
are consuming 206 and 284 MW, respectively. Thus, the lines
28-26 and 29-26 are exporting the remaining 310 MW, minus
losses. Due to such pre-fault condition, when the lines are opened
Generator 9 would accelerate indefinitely, as it does not contain
a speed regulator. A speed regulator is added to Generator 9, as
can be seen in Fig. 10(a) and the oscillations in that area cease
since there is only one Generator supporting the loads.

The disturbance in generation at Bus 9 and loads at Buses 28
and 29 is shown in Fig. 10(b), and the interruption of power

Fig. 11. Stages III and IV of the TDA for the sixth case in the EI system.

transfer from Area 3 to the rest of the system is shown in
Fig. 10(c). The TDA method is run again for the PMU data-set
of all buses in this case, without the knowledge of separation of
those buses. The TDA method properly finds the same areas as
the ones showed in Table II, that is, all the coherency detection
features, with additional evaluation of Area 3 islanding.

D. Eastern Interconnection (S2)

Next, the TDA is applied to 10 real events recorded in the
Eastern Interconnection (EI) by the FNET/GridEye project (a
low-voltage WAMS synchronized via GPS [49]). It is notewor-
thy to remark that the EI system has non-synchronous generators
connected and operating [54] which is expected to be handled by
the TDA method. All events consisting of generation trips that
taken place during the summer season in 2020, from July until
September, are considered in this investigation. The number of
frequency measurements per event varies from 92 up to 102. For
instance, a generator trip occurring on September 12 (the sixth
case) is depicted after the filtering process in the first plot in
Fig. 12. The filter reduces the noise interference demonstrating
the TDA robustness to the minimal remaining noise.

After clustering all above-mentioned events employing the
Algorithm 1, an average of 7 groups per event are found, with
a minimum of 2 and a maximum of 15 groups.

For the sixth case, the detrended frequency responses of
the PMUs are displayed in Fig. 12, exhibiting the concept of
coherency from (1) in the buses grouping (groups 1 to 11); i.e.,
the frequency measurements for buses in the same electrical
region behave similarly. It is important to point out that the
clustering process carried out by the TDA does not impose any
user-defined parameter as γ in (1). All buses are clustered using
the typicalities and correlation metrics, as shown in Fig. 11. Note
that the first group is shaped by a single bus located at the edge
of the EI (Bus 3001 in the Sasketchwan Province).

Considering all 10 events, the size of groups varies from 46
buses to single bus; particularly, some buses located at the edge
of the EI. The most commonly clustered together buses are
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Fig. 12. FNET/GridEye groups for the sixth event.

Fig. 13. Geographical distribution of groups in the EI.

depicted in their geographical distribution in Fig. 13, where the
proximity of the groups indicates that the method can success-
fully identify coherent groups. As most of the events consisted of
generator trips on the eastern side of the EI, the coherent groups
closer to the Atlantic coast are smaller in geographic extent, as
such disturbances excited more modes in these areas.

E. Processing Time

Since the method was not implemented on a specific pur-
pose hardware which impacts the time duration. Each case

TABLE VIII
EXECUTION TIME FOR CASES S1.C1, S1.C2, AND S2 AND COMPARISON

METHODS

was simulated 10 times to acquire the average time of CPU
processing. The TDA method is implemented with MATLAB
R2018a on an Intel Core i7-8850 U 2.00 GHz processor with
8 GB of memory, resulting in the average times presented
in Table VIII, confirming the computational efficiency of the
method to deal with hundredth of measurements in less than
82 ms. For comparison purposes, the work in [23] presents an
average of 72.3 ms for 68 measurements. It can be seen that the
TDA method is a faster method than DCD and slow-coherency,
without requiring load flow results, the number of clusters like
slow-coherency, and cutoff coherency constant in both methods,
except for frequency measurements. It must also be pointed out
that the TDA’s execution time also includes the pre-processing
stage time.

F. Discussion

For all three cases, the number of iterations, until the final
number of clusters is reached, is maximum of 3. It is interesting
to note that the correlation metric inherently takes into account
the electrical proximity of buses. This is specially important for
the clustering process to prevent miss-clustering. The number
of areas with the TDA method partially depends on the initial
behavior of bus responses, suggesting the importance of local
characteristics like weak connections that indicate electrical
islands.
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TABLE IX
SLOW MODES COMPARISON - S1.C1

The islanding condition is evidenced in both cases for the
NETS-NYPS grid, where Case 1 exhibits Area 6 only composed
of non-generator buses and Case 2 has an exclusive area defined
by Generator 11 and its closest load bus (bus 33). This result
is also confirmed for Case 2 in Fig. 7. This information, along
with additional PMU coordinates, may support operators for
islanding detection and define better islanding schemes.

VI. TDA VALIDATION

It is worth noting that DDMs find areas for the event under
study, whereas MBAs find areas for all small-disturbance around
the equilibrium point [13]. Thus, by comparing the reduced
model from the TDA method with MBAs, we quantify how
efficient the method is in producing a reduced order model while
showing possible islands in the system, for controlled islanding
and WAMS monitoring purposes.

Besides the dynamic simulations accomplished for the system
S1 and the TDA application, the PST is also used for its model
reduction and linearization, being both applied to the areas found
by the TDA and slow-coherency methods, and the ones provided
in [23]. The comparison is done by using the slow-coherency
[13] aggregation method whose implementation is available in
the PST function s_coh3 [51]. This function uses as inputs: the
areas found by the clustering method, the number of areas, the
data of the system. The areas provided by the three clustering
methods (TDA, slow-coherency and DCD) are used as input by
the PST slow-coherency aggregation algorithm.

After gaining all three reduced models, their modes are com-
pared with the ones of the complete model for Case S1.C1,
using the svm_mgen function from PST to linearize the reduced
models and extract the modes. This validation is achieved by
contrasting the modal information derived with the TDA method
against the one resulting from the DCD and slow-coherency
techniques. For the sake of brevity, we only show Case S1.C1,
however the same comparison is accomplished for Case S1.C2
and the third case in [23]. There is a consistency in the error of
the modes throughout the cases and adherence to the real value
of the modes. This is of great importance for the validation of
the method as a clustering method.

A. Validation Against Existing Methods for Case S1.C1

Table IX depicts the slowest modes obtained from the reduced
model provided by the TDA areas compared with the full model
and the areas from the slow-coherency and DCD techniques
for Case S1.C1. The TDA clustering attains the best modes ap-
proximation. As mentioned in the previous section, the method
performs without arbitrary tuning of coherency parameter γ as
required by the compared methods. The proposed method also
suggests the islands’ detection and it is able to achieve all this
within transitory speed conditions.

VII. CONCLUSION

In this paper, a new data-driven method was proposed to
track changes of coherent measurements belonging to generator
and non-generator buses in large-scale interconnected power
systems. This is a non-parametric statistical method that does not
require any previous knowledge of the power system dynamics
or collected data. As a result, it is not necessary to use any param-
eter of the system, to specify and tune empirical thresholds or
to check if statistical premises necessary to build a formal prob-
ability density functions for the data are met. The TDA method
was first applied to an equivalent 68-bus test system and the
results were compared against slow-coherency (model-based)
and DCD (data-driven) methods, exhibiting improvements in
terms of modal frequency approximation of reduced order mod-
els provided by each method using [18] and [23], respectively.
Additionally, test results and validation were carried out us-
ing real measurement collected (FNET/GridEye project) from
a large interconnected power system (Noth-America Eeastern
Interconnection). The application of the method in a real system
shown that the approach is robust to real noise and outliers, being
capable to present high accuracy and consistent results. From the
practical perspective, the method is also capable to detect local
areas for islanding and accurate develop reduced order models
with low computational burden.

Future work efforts will be to improve potential use of the
TDA method for: fault location; area’s detection of large fre-
quency variations and consequently estimate the inertia dis-
tribution, data-driven center of inertia (COI) estimation, and
designing advanced special protection schemes.
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challenges of low-inertia systems,” in Proc. Power Syst. Comput. Conf.,
2018, pp. 1–25.

[2] B. Mohandes, M. S. ElN. MoursiHatziargyriou, and S. El Khatib, “A
review of power system flexibility with high penetration of renewables,”
IEEE Trans. Power Syst., vol. 34, no. 4, pp. 3140–3155, Jul. 2019.

[3] H. You, V. Vittal, and X. Wang, “Slow coherency-based islanding,” IEEE
Trans. power Syst., vol. 19, no. 1, pp. 483–491, Feb. 2004.

[4] C. G. Wang, B. H. Zhang, Z. G. Hao, J. Shu, P. Li, and Z. Q. Bo, “A novel
real-time searching method for power system splitting boundary,” IEEE
Trans. Power Syst., vol. 25, no. 4, pp. 1902–1909, Nov. 2010.

[5] O. Gomez and M. A. Rios, “Real time identification of coherent groups
for controlled islanding based on graph theory,” IET Gener., Transmiss.
Distrib., vol. 9, no. 8, pp. 748–758, 2015.

[6] Z. Lin, F. Wen, Y. Ding, and Y. Xue, “Data-driven coherency identification
for generators based on spectral clustering,” IEEE Trans. Ind. Informat.,
vol. 14, no. 3, pp. 1275–1285, Mar. 2018.

[7] S. A. Siddiqui, K. Verma, K. Niazi, and M. Fozdar, “Real-time mon-
itoring of post-fault scenario for determining generator coherency and
transient stability through ANN,” IEEE Trans. Ind. Appl., vol. 54, no. 1,
pp. 685–692, Jan./Feb. 2018.

[8] S. Kamali, T. Amraee, and F. Capitanescu, “Controlled network splitting
considering transient stability constraints,” IET Gener., Transmiss. Dis-
trib., vol. 12, no. 21, pp. 5639–5648, 2018.
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