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A B S T R A C T   

The precise estimation of Rate Of Change Of Frequencies (ROCOFs) in a generation trip event can be helpful on 
power system inertia estimation, fast system response, and accurate event capturing. However, the ROCOF es-
timations from the existing Synchronized Measurement Devices (SMDs) are usually simply calculated by the 
finite difference between two adjacent frequency measurement points. The ineluctable noises, disturbances, and 
spikes from real-world frequency measurements can bring large dynamics to the ROCOF estimation and thus can 
result in an inaccurate estimation of the initial ROCOF. This issue becomes more serious when the target power 
grid has low inertia and a large amount of distributed energy sources are deployed. To address this issue, a 
precise ROCOF estimation algorithm is designed based on least square method with flexible window size. In 
addition, a median filter is also designed and applied on the frequency measurements before using the proposed 
algorithm. The window size and thresholds in the proposed algorithm are determined with historical event data 
analysis. The proposed algorithm is deployed in a low cost, flexible, and distribution level universal grid analyzer 
(UGA) platform. Multiple experiments are conducted in both a laboratory and the Hawaiian Islands to verify the 
effectiveness of the proposed algorithm.   

1. Introduction 

Rate Of Change Of Frequencies (ROCOFs) measured from Synchro-
nized Measurement Devices (SMDs) have critical contributions to the 
power system applications such as inertia estimation [1,2], frequency 
control [3], protection [4], and event detection [5]. For example, the 
ROCOF could be an essential measurement for fast frequency control in 
a low inertia power system. ROCOFs are also critical measurements for 
oscillation detection [6]. It would be more important when the power 
system contains large amounts of distributed energy sources (DERs). 
However, the dynamics generated from DERs may bring disturbances on 
the frequency measurements and thus results in inaccurate ROCOF 
measurements. 

According to IEEE C37.118.1 [7], SMDs are required to provide 
ROCOF measurements. However, there is no specific ROCOF measure-
ment algorithm requirement in this standard. The simplest ROCOF 
calculation approach is to calculate the finite difference between two 
adjacent frequency measurements [8]. In contrast, in real-world 

applications, the ineluctable noises, disturbances, and spikes from the 
frequency measurements can bring challenges to the precise ROCOF 
estimation. Wright et al. [9] introduces one of the significant problems 
with ROCOF estimation which is the phase steps or phase jump. The 
phase steps cause frequency spikes and thus cause ROCOF spikes. In 
order to remove the fast ROCOF dynamics, [10] introduces an interpo-
lated Discrete Fourier Transform (DFT) and Kalman filter method to 
precisely estimate ROCOF. Unfortunately, this method cannot be 
applied in real-time. Frigo et al. [11] utilizes a low-pass filter to the 
ROCOF measurements to provide a smoother trend. In addition, the 
ROCOF estimation algorithms can be either non-window based or win-
dow based ones. For non-window based algorithms, the enhanced 
interpolated DFT [12] and the iterative interpolated DFT [13] are two 
static estimation algorithms which only compute the ROCOF as the in-
cremental ratio between two adjacent frequency points. On the other 
hand, window based algorithms provide a more accurate ROCOF esti-
mation such as compressive sensing-based TaylorFourier model [14]. 
However, the window sizes of window based algorithms can be different 
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based on ROCOF applications and the system inertia of the target power 
grid. 

The recommended ROCOF estimations in the power grids with large 
inertia are with 0.1 to 0.5 s window sizes [15]. The ROCOF estimation 
problem becomes especially difficult when the scale of the power grids 
become smaller or when the level of non-synchronous generation be-
comes very high since the system inertia become smaller. For example, 
[16] uses multiple window sizes, i.e., 0.1, 0.25 and 0.5 s, for ROCOF 
estimation in a power grid with a battery energy storage system 
deployed while [17] uses a 0.1 s window size for ROCOF estimation 
since their target power grid is a microgrid with low inertia. Moreover, 
with more renewable energy sources deployed, the system inertia would 
become even smaller and thus further increase the difficulty of the 
ROCOF measurement accuracy. On the other hand, if the ROCOF win-
dow size becomes too small, the breaker operations and noises may also 
trigger the event detection. 

To address the precise ROCOF estimation in low inertia power grids, 
this paper aims to precisely measure the ROCOF in real-time with low 
inertia power grids. In order to measure ROCOFs, a precise DFT based 
frequency measurement algorithm with a high reporting rate is firstly 
introduced. Then, the least square method based ROCOF estimation 
algorithm with flexible window size is given. The window size and 
thresholds in the proposed algorithm are determined with historical 
event data analysis recorded from two Hawaiian Islands. To verify the 
real-world performance, the proposed algorithm is deployed in a low 
cost, flexible, and distribution level universal grid analyzer (UGA) 
platform. Finally, to verify the effectiveness of the proposed algorithm, 
multiple experiments are conducted in both a laboratory and the Ha-
waiian Islands. 

The main contributions of this paper are summarized: 

• A precise Rate Of Change Of Frequency (ROCOF) estimation algo-
rithm is proposed through utilizing least square method with flexible 
window size and median filter.  

• An event detector is designed and utilized to analyze the real-world 
transients captured from the Hawaiian Islands. Three kinds of events 
are successfully captured and categorized. The parameters in the 
ROCOF estimation algorithm are optimized through using event 
based statistic analysis.  

• The real-world performance of the proposed algorithm is verified 
through deployment in a low cost, flexible, and distribution level 
universal grid analyzer platform. The accuracy of both frequency and 
ROCOF estimations are verified under steady state and wall sources.  

• Multiple experiments are conducted both in the laboratory and in the 
Hawaiian Islands to verify the effectiveness of the proposed 
algorithm. 

2. Precise ROCOF estimation algorithm 

The overall framework of the proposed precise ROCOF estimation 
algorithm design is illustrated in Fig. 1. The first part is the data 
collection including UGA design and improvement, UGA deployment 
with high reporting frequency and ROCOF, and data transferring and 
storage. Then, in the second part, the data will be utilized to optimize the 
proposed algorithm design through an offline analysis including data 
preprocessing, transient capture, statistic analysis, initial value setting, 
optimization for curve fitting window size, and filter design. The rela-
tionship between the proposed work and previous work is marked out 

Fig. 1. Framework of the Precise ROCOF estimation algorithm.  

Fig. 2. Flowchart for the frequency estimation.  
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and detailed introduction for these steps will be given in the following 
sections. 

2.1. Frequency estimation algorithm 

A precise frequency estimation algorithm is the foundation of the 
precise ROCOF estimation. In this paper, a dynamic single-phase syn-
chronized frequency estimation is used [18]. Since the detailed fre-
quency estimation algorithm can be found in [18], only the flowchart for 
the frequency estimation is given in Fig. 2. Since the proposed ROCOF 
estimation algorithm is designed to be deployed in low inertia power 
systems, the system inertia will be much smaller than that of a large 
power grid. In this case, the frequency arresting period (before fre-
quency drops to the Nadir) would be much shorter which requires a high 
frequency reporting rate for fast frequency control purposes. In this 
paper, As shown in Fig. 1, it can be seen that an improved UGA is 
designed during the data collection step, where the ADC is increased 
from 14-bit to 16-bit and the sampling rate is increased from 1440Hz to 
5760 Hz. Besides, in the data analysis step, the initial parameters are set 
based on the literature listed in Fig. 1. Referring to the previous research, 
the initial parameters of transient capture, ROCOF threshold, filter, and 
ROCOF window are set from Zhan et al. [19], FNET [20], and Arana 
et al. [15], respectively. Then the optimal parameters of the proposed 
method are set through the experiments. In addition, a 120 Hz reporting 
rate is used for both frequency and ROCOF estimations. The reason for 
using 5760 Hz sampling rate is to have 96 samples per cycle so that the 
estimation accuracy of the phase angle can be increased. The frequency 
is estimated through using 24 phase angles with a second order curve 
fitting method [18]. In this case, precise phase angle measurements can 
increase the accuracy of estimated frequencies. 

2.2. ROCOF estimation algorithm 

A ROCOF is typically defined as the tangential line for any given 
point on a frequency response curve. From the SMDs’ point of view 
(according to the IEEE C37.118.1 [7]), the definition of ROCOF is, 

ROCOF(t) =
df (t)

dt
, (1)  

where t is the time stamp and f(t) is the frequency at time t. However, 
the dt here can be a different value determined by the ROCOF estimation 
window size and frequency reporting rate. The ROCOF estimation al-
gorithm is also not clearly defined. Usually, ROCOF estimated in the 
PMUs is using the smallest dt, i.e., calculate the ROCOF based on two 
adjacent frequency measurements and the frequency reporting rate. 

2.3. Initial ROCOF estimation algorithm 

The initial ROCOF is most commonly calculated as the change in 
frequency over 0.1 to 0.5 s right after a sudden generation trip or load 
change. Therefore, the initial ROCOF can be calculated as, 

ROCOFinitial(t) =
ft − ft− Δt

Δt
, (2)  

where Δt can range from 0.1 to 0.5 s [15]. However, directly using two 
frequency measurements to calculate the initial ROCOFs will result in a 
low precision on the ROCOF estimation. In this paper, a first order curve 
fitting method is applied to the frequencies over Δt to estimate the 
ROCOF at t+ Δt

2 . Considering this method will be utilized in the 
real-world SMDs, the Least Squares Method (LSM) is utilized [21]. 
Assuming the time stamps of the frequency measurements to be X, the 
frequency curve Y can be written as, 

Y = k⋅X + b, (3)  

where k is the slope and b is the intercept. Here, k is the best fitted 
ROCOF with frequency curve Y. k can be calculated as, 

k =
XY − X⋅Y
X2 − (X)2. (4)  

Since X, X2, and (X)2 are constant values and can be calculated before 
the real-time ROCOF calculation. For example, X can be [0, 1/120.2/
120, ...,12/120] if Δt is 0.1s and the frequency reporting rate is 120 Hz. 

Fig. 3. FNET public website for Hawaiian Islands.  
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Note that X should be determined based on the Δt which is usually 
designed between 0.1 to 0.5 s. 

3. Event detection algorithm 

To further optimize the parameters in the proposed ROCOF estima-
tion algorithm, two Universal Grid Analyzers (UGAs) have been 
deployed in the Hawaiian Islands, i.e., Maui and Kauai. Currently, they 
are streaming data back to the FNET Grideye [22] with a 120 Hz fre-
quency reporting rate which is the highest frequency reporting rate 
mentioned in [23]. These two units are also available on the FNET public 
website in [20]. An illustration for the public data on the FNET public 
website is also given in Fig. 3. The different colors show the frequency 
deviation from the nominal value. 

In order to design the Δt in (2), the load change and generation trip 
events should be filtered out from the Hawaiian Island data. The event 
detection algorithm utilized in this work is a two filter based event 
detection algorithm. The flowchart of the proposed algorithm can be 
found in Fig. 4. Two ROCOF filters are designed with 0.5 and 0.05 s 
window sizes which are initially designed based on experience. Note 
that the window sizes are user defined values and will be revised based 
on the event analysis. Using different window sizes would have different 
ROCOF values and thus result in different threshold values. The three 
threshold values for UGA #2005 (located in Maui) and UGA #2006 
(located in Kauai) are listed in Table 1. The threshold values for two 

units are different because the power system inertia for Maui is larger 
than that for Kauai. 

4. ROCOF and filter window size design 

4.1. Real-world event capturing and analysis 

In order to finalize the Δt in (2), the recorded events have been 
categorized into three groups based on the event arresting period: 1) 
transient events; 2) long arresting period events; and 3) hybrid arresting 
period events. The definition of the event arresting period is the time 
frame leading up to the nadir. As shown in Fig. 5, the event arresting 
period distribution is given sorting from the lowest value to the highest 
value. There are about 13 events with short arresting periods (transient 
events) and the rest are with long arresting periods. Examples of both 
transient and long arresting period events are given in Fig. 6(a) and (b). 
However, there are some events that have both transient and long 
arresting periods but are categorized into a transient event group. These 
events are now defined as hybrid period events, shown in Fig. 6(c). The 
causes of events are also confirmed with the local utility company: 1) 
transient events are usually breaker operation; 2) long arresting period 
events are usually load change or generation trip; 3) hybrid arresting 
period events are usually generation trip with fault. Note that this is a 
unique feature for a power system with low inertia. The generation trip 
events in large power system usually do not have the frequency spikes 
[5]. 

A summary for the event capturing results in two months is given in 
Table 2. The event capturing starts on June 11, 2021 and the data 
analyzed in this study ends on August 8, 2021. Based on the algorithm 
shown in Fig. 4, the transient and long arresting period events can be 
classified. Note that the initial parameters of the event capturing algo-
rithm is coming from FNET event detection algorithm [6]. However, the 
hybrid arresting period events are hidden in the transient events which 
need eyeballing to pick them out. In addition, the hybrid arresting 

Fig. 4. Flowchart for event detection algorithm.  

Table 1 
Threshold values for event detection.  

UGA # Initial Initial Initial Final Final Final  
Threshold 1 Threshold 2 Threshold 3 Threshold 1 Threshold 2 Threshold 3 

#2005 0.1 Hz/s 0.25 Hz/s 3 Hz/s 0.1082 Hz/s 0.1864 Hz/s 1 Hz/s 
#2006 0.2 Hz/s 0.5 Hz/s 6 Hz/s 0.1895 Hz/s 0.3822 Hz/s 2 Hz/s  

Fig. 5. Event arresting periods for one island.  
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period events may have an inaccurate ROCOF with both 0.5 and 0.05 s 
ROCOF window sizes. Since the target events of this paper are the long 
arresting period events and the hybrid arresting period events, a median 
filter is utilized on the frequency response to filter out the frequency 
spikes. Based on the existing hybrid and long arresting period events, the 
median filter window size is designed to be 1

3 s. The example hybrid 
arresting period event after filtering is given in Fig. 6(d). 

In order to finalize the window size for the ROCOF estimation, the 
event arresting period for long arresting period events are calculated as, 

Tevent = Tend − Tstart, (5)  

where Tend and Tstart are the time stamps when frequency drop to 95% 
and 5% of the frequency nadir. The event arresting period for one island 
is shown in Fig. 5. It can be clearly observed that the minimum event 
arresting period which can be utilized is for the ROCOF window size 
design. By analyzing the ROCOFs of the transient events, the minimum 
event arresting period is also utilized for the second ROCOF window size 
design. Based on the above analysis, the two ROCOF windows are 
designed as 0.3 and 0.05 s. However, using the frequency responses after 
median filter will cause another issue that the ROCOF values become 
smaller. This means the ROCOF thresholds need to be adjusted to cap-
ture all the long and hybrid arresting events. Then the ROCOF thresholds 
are redesigned by analyzing the minimum and maximum ROCOFs with 

Fig. 6. Example events: (a) A transient event; (b) A long arresting period event; (c) A hybrid arresting period event; (d) A hybrid arresting period event after filtering.  

Table 2 
Event summary for two UGAs.  

UGA # Deployed Transient Long arresting Hybrid arresting  
location events period events period events 

#2005 Maui Island 23 16 10 
#2006 Kauai Island 10 34 11  
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0.3 and 0.05 s ROCOF window sizes. The initial and finalized thresholds 
are given in Table 1 where the initial thresholds are user defined values 
and the finalized thresholds are designed by the minimum ROCOFs of 
the detected long arresting period events. After applying the new 
thresholds, the long arresting period events can be captured from the 
raw data while the transient events are filtered out. In addition, the 
frequency spikes in hybrid arresting period events are also filtered out 
and they are captured as long arresting period events. 

4.2. Transient detector design 

In order to further distinguish the hybrid arresting period events 
from the long arresting period events, a transient detector [19] is 
designed to identify the waveform phase and voltage magnitude step 

change. Note that the frequency spikes are actually caused by the phase 
step change. The definition of the proposed transient detector, rdet , is, 

rdet =
∑T+t0

t=t0

|U(t+ T) − U(t)|, (6)  

where t is the time stamp, T is the transient detector window size which 
is defined as 1 cycle here, t0 is the starting time, and U(t) is the waveform 
voltage raw data. If distortion happens in the waveform, this detector 
can quickly identify the distortion and report to the proposed algorithm. 

In order to verify the effectiveness of the proposed algorithm, a 
simulated hybrid arresting period event and a long arresting period 
event are deployed in an ideal power source. The events are rebuilt 
through both the frequency, voltage magnitude, and phase jump. The 

Fig. 7. Transient detectors and frequency test profiles: (a) Frequency response for the example hybrid arresting period event; (b) Frequency response for the example 
long arresting period event; (c) Transient detector response for the example hybrid arresting period event; (d) Transient detector response for the example long 
arresting period event. 
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transient detectors and event frequency responses are given in Fig. 7. It 
can be observed that the transient detector, rdet , gives a high value 
feedback during the frequency spike in the example hybrid arresting 
event. On the other hand, this transient detector keeps in a low value 
during long arresting event. 

As shown in Fig. 8, the event detection algorithm can be improved by 
using the transient detector. In this case, the hybrid arresting period 
events can be distinguished from the long arresting period events. When 
utilizing the median filter, the transient events can no longer be 
distinguished. Note that the transient detector is optional. The hybrid 
arresting period events can also be distinguished through ROCOF with 
0.05 s window size before applying median filter. 

5. Experiment results 

In order to verify the effectiveness of the proposed event detection 
based ROCOF estimation algorithm, verifications including frequency 
measurement accuracy, ROCOF estimation accuracy, algorithm perfor-
mance in hardware, communication protocol selection, real-world 
ROCOF data streaming, and field deployments in both the laboratory 
and the field tests are given here. 

5.1. Algorithm deployment 

UGAs are one kind of low cost, flexible, and distribution level PMU 
platforms [24]. With its flexibility, different kinds of synchrophasor 
estimation algorithms can be deployed and tested on UGAs. In this 
experiment, the ROCOF estimation algorithm, transient detector, and 
frequency estimation algorithms are deployed in the UGAs. On the other 
hand, the real-time ROCOFs, transient detectors, and frequency mea-
surements can be received from the server side. For laboratory test 
purposes, the event detection algorithm is deployed offline in laboratory 
tests and deployed in the server in the field test 

5.2. Verification in the laboratory 

In the laboratory verification, the accuracy of the frequency esti-
mation is first verified under both nominal and off-nominal frequency 
steady states. The results are given in Table 3. It can be observed that 

frequency error for both the nominal and off-nominal cases are much 
lower than the IEEE requirements (maximum frequency error is 0.005 
Hz [7]) which verify the estimation accuracy of the frequency estima-
tion. Note that the FE of UGA with a 120 Hz reporting rate is relatively 
lower than UGA with a 10 Hz reporting rate. This is because the accuracy 
of the frequency estimation is sacrificed for the higher reporting rate. 

In addition, the ROCOF estimation accuracy is also verified in a 
laboratory. Since the estimation accuracy of the ROCOF highly depends 
on the ROCOF window size and the frequency noise, comparing the 
ROCOF estimation results under steady states would be unfair. In this 
case, a comparison between online ROCOF estimation and offline 
ROCOF calculation is given in Fig. 9. The online ROCOF estimation is 
using 0.3 s window size and deployed in UGA. The ROCOF estimation 
will be sent to the server in real-time. On the other hand, the offline 
ROCOF calculation is using the measured frequency to calculate the 
ROCOF through MATLAB curve fitting function block which can be 
treated as ground truth values. Experiment results shown in Fig. 9 have 
verified that the online ROCOF estimation can follow the offline ROCOF 
calculation which verifies the accuracy of the online ROCOF estimation. 

5.3. Verification in the field test 

In the field test experiment, two UGAs have been deployed in the 
Hawaiian Islands, i.e., the Maui and Kauai islands. The overall archi-
tecture for UGAs and servers is illustrated in Fig. 10. 

In Section 4.1, the event detection and analysis for these two units 
have been discussed in detail. To avoid redundancy, the real-time 
ROCOF estimation results for the three example events (the frequency 
responses are shown in Fig. 6(a), (b), and (c)) which are calculated in the 
UGA side are given in Fig. 11. It can be observed that the ROCOFs with 
0.3 and 0.05 s window sizes can be successfully calculated in the servers 
in real-time. Furthermore, ROCOFs with both 0.3 and 0.05 s window 
sizes cannot detect transient events, which verify the effectiveness of the 
median filter. For long and hybrid arresting period events, ROCOFs with 
0.3 s window size could easily capture these two kinds of events. If a 
short response time is required, ROCOFs with 0.05 s window size can 
also be utilized to capture these two kinds of events. 

TCP/IP protocol is utilized between UGAs and servers for data 
streaming. Since there are Coordinated Universal Time (UTC) time 
stamps for each frequency and ROCOF estimation, the communication 
delay caused by the TCP/IP protocol has no influence on the accuracy of 
the ROCOF estimation. However, the delay caused by the TCP/IP pro-
tocol can be a concern for real-time applications using ROCOF estima-
tions. A comparison between IEEE C37.118.2 and IEC 61850-90-5 is 
discussed in [25]. The time delay of IEEE C37.118.2 with ATM OCI can 
reach 13.0ms from PMUs to the regional server. In this case, a local 
server should be deployed in Hawaii islands to apply real-time ROCOF 
based applications. 

As a conclusion, the proposed precise ROCOF estimation algorithm is 
compared with the IEEE standard in [23] is illustrated in Table 4. The 
performance of the proposed algorithm can be evaluated through the 
five aspects in the table. The FE represents the frequency measurement 
accuracy under 120 Hz reporting rate which is much better than the 
requirements in the IEEE standard. The rate of frequency error (RFE) 
represents the accuracy of the ROCOF estimation which is also much 
better than the IEEE standard requirement. Since the ROCOF in this 
paper is targeting on the initial ROCOF estimation, the window size is 

Fig. 8. Flowchart for event detection algorithm improved by the tran-
sient detector. 

Table 3 
Frequency error under different steady state frequency level.  

Steady state FE of UGA with 120 FE of UGA with 10 FE in IEEE C37. 
frequency level Hz reporting rate Hz reporting rate 118.1 

60 Hz 3.8372e-05 Hz 1.6935e-05 Hz 0.005 Hz 
59.8 Hz 3.6050e-05 Hz 1.6648e-05 Hz 0.005 Hz 
60.2 Hz 3.8543e-05 Hz 1.7325e-05 Hz 0.005 Hz  
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flexible based on the Hawaii island power grid while this is not required 
in IEEE standard so that it is uniquely designed in this paper. The al-
gorithm is deployed in UGAs which utilize TCP-IP protocols to 
communicate and it is one of the available communication protocols in 
the IEEE standard. Finally, in the field deployment, the data missing rate 
is lower than 3% which is very good in real-world applications and there 
is no requirement in IEEE standard. To summarize, the proposed algo-
rithm and the deployment in UGAs can fully fulfill the requirements in 
IEEE standard. In addition, it has a uniquely designed ROCOF window 
and a very good data missing rate in the field deployment. 

6. Conclusions 

ROCOF measurement is critical for high-renewable low-inertia 
power grid as it is an important indicator of frequency stability and can 
help predict the magnitude of disturbances. This paper introduces a 
precise ROCOF estimation algorithm for low inertia power grids. The 
ROCOF estimation algorithm is calculated by a LSM based curve fitting 
method on the frequency response during a given window size. By uti-
lizing the real-world historical data, the ROCOF thresholds and window 
sizes are optimized. The proposed ROCOF estimation algorithm can 
precisely estimate the initial ROCOF for a generation trip event. 
Furthermore, a transient detector is also designed to distinguish the 
hybrid arresting period events. Laboratory and field tests with onsite 
SMDs demonstrate the effectiveness of the proposed algorithm and 
frequency estimation. 
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Fig. 11. Example ROCOF estimated during events in the Hawaiian Islands: (a) ROCOF with 0.3 s window size during a transient event; (b) ROCOF with 0.3 s window 
size during a long arresting period event; (c) ROCOF with 0.3 s window size during a hybrid arresting period event; (d) ROCOF with 0.05 s window size during a 
transient event; (e) ROCOF with 0.05 s window size during a long arresting period event; (f) ROCOF with 0.05 s window size during a hybrid arresting period event; 
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