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Abstract: The benefits of networked microgrids in terms of economics and resilience are investigated
and validated in this work. Considering the stochastic unintentional islanding conditions and
conventional forecast errors of both renewable generation and loads, a two-stage adaptive robust
optimization is proposed to minimize the total operating cost of networked microgrids in the worst
scenario of the modeled uncertainties. By coordinating the dispatch of distributed energy resources
(DERs) and responsive demand among networked microgrids, the total operating cost is minimized,
which includes the start-up and shut-down cost of distributed generators (DGs), the operation and
maintenance (O&M) cost of DGs, the cost of buying/selling power from/to the utility grid, the
degradation cost of energy storage systems (ESSs), and the cost associated with load shedding. The
proposed optimization is solved with the column and constraint generation (C&CG) algorithm.
The results of case studies demonstrate the advantages of networked microgrids over independent
microgrids in terms of reducing total operating cost and improving the resilience of power supply.

Keywords: robust optimization; networked microgrids; uncertainty; economics; resilience

1. Introduction

A microgrid could be seen as a controllable local energy system consisting of vari-
ous distributed generators (DGs), energy storage systems (ESSs), and energy consumers.
Normally, a microgrid is connected to a utility grid through the Point of Common Cou-
pling (PCC) but has the capability of operating independently [1]. When connected to
the utility grid, a microgrid can not only import power from or export power to the util-
ity distribution network under different operational conditions, but also provide various
kinds of ancillary services, e.g., frequency regulation, voltage support, virtual inertia, etc.,
to the utility grid [2–4]. For energy consumers, a microgrid can reduce carbon emission,
improve energy efficiency, and serve low-cost and clean energy. In particular, through
intentionally/unintentionally islanding from the utility grid, a microgrid is able to continue
to supply power to its customers without any interruption when there is an outage on
the utility gird, leading to improved energy resilience [5]. Because of these advantages,
the study on microgrids has never been more popular [6].

While the benefits of individual microgrids for improving the resilience of local power
supply and facilitating integration of renewable generation have been well recognized,
networked microgrids, defined as the aggregation of adjacent microgrids that are phys-
ically connected and functionally interoperable, provide a more efficient and resilient
alternative. Generally, a microgrid imports/exports power from/to the distribution grid
in grid-connected mode, and this power is instantaneously forced to be zero when un-
intentional islanding happens. In this circumstance, the islanding process needs quick
adjustment of the already committed DGs and ESSs, and even load shedding as the last
resort to mitigate the power imbalance caused by unintentional islanding. To reduce or
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avoid load shedding and have the microgrid being prepared for possible unintentional is-
landing, certain number of DGs should be installed and committed and the ESSs should be
oversized and charged to certain levels. Under this circumstance, interconnecting separate
microgrids into networked microgrids has the potential to reduce the installed capacity of
DGs and ESSs by sharing DGs and ESSs as well as loads with diverse profiles. In addition,
networked microgrids can improve the resilience of power supply through exchanging
power during grid outages or reducing the total operating cost under the same level of
resilience. Due to such benefits, networked microgrids have attracted growing attention [7].

1.1. Literature Review and Gap Analysis

Existing research works are mostly focused on the multi-level energy management of
networked microgrids for economic benefits and networked-microgrid-assisted restoration
and recovery for resilience. In [8], a bi-level scheduling strategy for coordinated operation
of networked microgrids in a distribution system is proposed. Each microgrid performs
its own energy management in the lower level, while a robust economic dispatch model
for distribution system is formulated in the upper level, through which price signals are
derived and then sent to each microgrid. In [9], a nested energy management strategy is
proposed for day-ahead scheduling of networked microgrids. In [10], a distributed energy
management framework is proposed for a collaborative operation of networked micro-
grids and the local utility grid. Compared with centralized energy management in [8,9],
distributed energy management guarantees cooperation among microgrids with fairness
and privacy while addressing the issue of scalability of energy management in networked
microgrids. In [11], a decentralized energy management system is proposed for networked
hybrid AC/DC microgrids. The energy sharing of networked microgrids is coordinated
by the DC network to minimize the power transmission loss with network constraints.
These research studies are mainly focused on optimizing the energy transactions between
microgrids for economic benefit. However, the stochasticity of unintentional islanding has
been ignored, i.e., the resiliency benefit of networked microgrids is rarely considered in the
existing energy management models.

Since microgrids are usually connected at the distribution level, the resiliency benefits
of networked microgrids are mostly demonstrated through facilitating the restoration and
recovery of the distribution system [12,13]. Based on the roles that networked microgrids
could play, networked microgrids assist in the restoration and recovery of distribution grids
mainly from three aspects: networked-microgrid-assisted restoration [14,15], networked-
microgrid-assisted network formation [16,17], and networked-microgrid-assisted black-
start [18,19]. However, the implementation of these networked-microgrid-assisted strate-
gies requires significant changes to today’s existing regulatory environments [20]. Further,
effectiveness of these strategies requires oversized DGs and ESSs in microgrids. In other
words, the resiliency benefits are gained at the expense of sacrificing the economic benefits.

In fact, the economic benefits of networked microgrids cannot be verified without
considering the resilience, and vice versa. For this reason, it is necessary to consider the
stochasticity of unintentional islanding in the energy management of networked micro-
grids since the most fundamental feature of microgrids is to seamlessly separate from the
distribution system during outages and continue to supply its islanded portion. In [21],
the islanding capability of a microgrid is modeled as a chance constraint and integrated into
the stochastic microgrid scheduling problem. The chance-constrained programming model
is extended to include the reconfiguration of microgrids in [22]. In [23], the probability
distribution of islanding duration is estimated and modeled by a scenario set. Nevertheless,
the generation of scenario sets needs a probability distribution of unscheduled islanding
periods, on which information is very limited in practice. Unlike stochastic optimization,
robust optimization only needs the upper and lower boundaries of the stochastic variables,
neglecting their probability distributions and correlations. In [24], a robust optimiza-
tion model is proposed to quantify the reserve requirements of microgrids. Considering
resiliency requirements, another robust optimization model is proposed for microgrid
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scheduling in [25]. However, the occurrence time of the unintentional islanding has to be
enumerated. Further, the power balance is only required for a very short adjusting time
(e.g., 5 min) after islanding, and the duration of the unintentional islanding have been ne-
glected. In [26], the pre-set multi-period islanding constraints are included in the microgrid
scheduling model. In [27], the uncertainties of renewable generation and grid-connection
condition are included in the microgrid scheduling problem by formulating a two-stage ro-
bust optimization model. However, the uncertainty of load and the choice of load shedding
have been ignored. Nevertheless, refs. [21–27] are all targeted at a single microgrid.

To summarize, the advantages of networked microgrids over independent microgrids
cannot be verified without considering both the economic and resiliency aspects. Research
studies in [8–11] optimize the energy transactions between microgrids for economic benefits
while ignoring the stochasticity of unintentional islanding; i.e., the resiliency benefits of
networked microgrids are not considered. In [12–20], the resiliency benefits of networked
microgrids are demonstrated through facilitating the restoration and recovery of distribu-
tion grids, which leads to unnecessarily oversized DGs and ESSs. Considering the most
fundamental feature of microgrids is seamlessly islanding from the distribution system
during outages and continuing to supply its islanded portion, the islanding capability of a
microgrid is proposed to be integrated into the stochastic microgrid scheduling in [21–23]
and robust microgrid scheduling in [24–27]. However, the occurrence time and duration
of the unintentional islanding have been either pre-set or neglected. In addition, studies
in [21–27] are all focusing on a single microgrid.

To verify the advantages of networked microgrids over independent microgrids
in terms of both economics and resilience, a two-stage adaptive robust optimization is
proposed to minimize the total operating cost of networked microgrids considering the
stochastic occurrence time and duration of the unintentional islanding conditions and
conventional forecast errors of both renewable generation and loads. By coordinating the
dispatch of distributed energy resources (DERs) and responsive demand among networked
microgrids, the advantages of networked microgrids over independent microgrids are
validated in terms of both reducing the operating cost and improving the resilience of
power supply.

1.2. Contributions and Outline

In this paper, given the stochastic unintentional islanding conditions, a robust opti-
mization model is proposed for optimal scheduling of networked microgrids. The proposed
model is guaranteed to serve local loads continuously through rapidly adjusting the output
of committed DGs and ESSs and leveraging various DGs and ESSs from networked micro-
grids whenever unintentional islanding happens. To capture the uncertainties in renewable
generation, demand, and the occurrence time and duration of the unintentional islanding,
a two-stage adaptive robust optimization is proposed to optimize the objective function in
the worst-case scenario of the modeled uncertainties. The proposed optimization is solved
with the column and constraint generation (C&CG) algorithm. The results obtained demon-
strate the advantages of networked microgrids over independent microgrids in terms
of reducing the operating cost and improving the resilience of power supply. The main
contributions of this work are threefold:

1. Considering the uncertainties of the occurrence time and duration of the unintentional
islanding, a two-stage robust optimization for optimal scheduling of networked
microgrids is proposed to guarantee local loads being served continuously through
rapidly adjusting the output of committed DGs and ESSs in case of unintentional
islanding.

2. The correctness and effectiveness of proposed robust optimization model are validated
through various case studies. In particular, the advantages of networked microgrids
over independent microgrids in terms of reducing the operating cost and improving
the resilience of power supply have been verified.
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3. The solution efficiency of the C&CG algorithm in large and networked microgrids
has been validated.

This paper is structured as follows: The modeling of microgrid components and
networked microgrids is presented in Section 2. Section 3 describes the proposed two-stage
robust optimization model for networked microgrid scheduling considering the stochastic
unintentional islanding conditions. The numerical simulation results and analysis are given
in Section 4. The paper is concluded with major findings in Section 5.

2. Modeling
2.1. Microgrid Components

A microgrid consists of various distributed generators (DGs), ESSs, and energy con-
sumers. In practice, a microgrid central control (MCC) monitors the system running status
and sends optimize dispatch orders to corresponding components. The DGs in a micro-
grid simply fall into two categories: dispatchable and undispatchable. Dispatchable DGs,
e.g., small hydros, fuel cells, and microturbines, could be dispatched on demand at the re-
quest of MCC based on market needs or operator’s preference. By contrast, undispatchable
DGs, mainly referring to wind power and PV, are subject to the uncertain nature of weather
conditions and thus cannot be completely controlled by the MCC. In fact, wind power
and PV power can only be forecasted with limited accuracy. For wind power, the hour-
ahead forecast error could be made below 10%. However, the day-ahead forecast error
is generally over 20% [28,29]. As to PV power forecasting, the problem is getting more
difficult due to random cloud coverage and changing ambient temperature, both of which
affect the PV generation significantly [30,31]. To mitigate the uncertainties of renewables,
ESSs are normally installed on-site. Without loss of generality, both wind and PV power
are assumed independent and bounded random variables in this work. The goal here
is to guarantee continuous power supply of local demands through seamless islanding
considering the uncertainties of renewables, load, and the occurrence time and duration of
the unintentional islanding.

2.2. Networked Microgrids Structure

Traditionally, microgrids are rare and scattered thinly in the distribution grid. Each
microgrid is an independent and autonomous entity that has the choice to disconnect from
the distribution grid and perform as an autonomous island when the distribution grid is
disturbed. As more microgrids have been deployed in recent years, multiple microgrids
are becoming geographically adjacent and physically connected. Nevertheless, these con-
nected microgrids might still be functionally independent, i.e., independent microgrids.
Alternatively, these interconnected adjacent microgrids could also be networked at the
communication and control layers and become functionally interoperable networked micro-
grids. A simple illustration of networked microgrids is shown in Figure 1, which consists
of four individual microgrids. A central energy management system (EMS) communicates
with individual microgrids and coordinates the dispatch of them. Whenever the upstream
or downstream feeder is outaged, the two switches are opened and the four microgrids
become an island of networked microgrids. By sharing DGs and ESSs as well as loads
with diverse profiles, networked microgrids are expected to achieve better economics and
resilience compared with independent microgrids.
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Figure 1. Illustration of networked microgrids.

3. Mathematical Formulation
3.1. Robust Optimization Model

In this section, the networked microgrids scheduling problem is modeled as a two-
stage robust optimization by considering the variation of renewable generation, load, and
grid-connection condition. Unlike stochastic optimization, robust optimization does not
require the probability distributions and correlations of the stochastic variables. With-
out loss of generality, wind power PW

mwt, PV power PPV
mvt, and load PL

mdt are all assumed
independent, symmetric, and continuous random variables as in (1). Meanwhile, the grid-
connection condition ZG

t is assumed to be a binary random variable. Since these microgrids
are geographically adjacent and physically connected to the same substation or feeder,
the grid-connection condition ZG

t is assumed same for all microgrids. Meanwhile, the wind
and PV power between microgrids are assumed perfect positive correlated.

PW
mwt ∈

[
ˆPW

mwt − δW
mwt,

ˆPW
mwt + δW

mwt

]
δW

mwt ≥ 0

PPV
mvt ∈

[
ˆPPV

mvt − δPV
mvt,

ˆPPV
mvt + δPV

mvt

]
δPV

mvt ≥ 0

PL
mdt ∈

[
ˆPL

mdt − δL
mdt,

ˆPL
mdt + δL

mdt

]
δL

mdt ≥ 0

ZG
t ∈ {0, 1}, ∀m, w, v, d, t

(1)

The model is targeted to minimize total operating cost of the networked microgrids
as shown in (2), including start-up, shut-down, and fixed operation and maintenance
(O&M) cost of DGs (as in the first line), variable O&M cost of DGs (as in the third line),
cost of buying/selling power from/to utility grid (as in the fourth line), degradation
cost of ESSs (as in the fifth line), and cost associated with load shedding (as in the sixth
line). The robust optimization model is formulated in “min-max-min” form, as presented
in (2)–(12). The commitment status of DGs is determined in the first stage before the realiza-
tion of uncertainties and keeps the same value for all possible realizations of uncertainties.
The second-stage decisions, i.e., the PCC power, DG and ESS power, and load shedding, are
changing based on the worst realization of renewable generation, load, and grid-connection
conditions. By searching and optimizing the worst scenario, the proposed robust optimiza-
tion guarantees the feasibility and bottom line of the solution under all possible realizations
of uncertainties.
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min
u∈U

NT

∑
t=1

NM

∑
m=1

NmG

∑
i=1

SU
mit + SD

mit + CON
mit umit

+ max
ZG ,PW,PPV,PL∈W

min
P,PPCC ,PC ,PD ,PLS∈X{

NT

∑
t=1

NM

∑
m=1

NmG

∑
i=1

λmitPmit

+
NT

∑
t=1

NM

∑
m=1

λPCC
mt PPCC

mt

+
NT

∑
t=1

NM

∑
m=1

NmB

∑
b=1

Cmbt

(
PC

mbt + PD
mbt

)
NT

∑
t=1

NM

∑
m=1

NmD

∑
d=1

CLS
mdtP

LS
mdt

}
(2)

s.t.
U = {u : umit ∈ {0, 1}, ∀m, ∀i, t; } (3)

W =
{

PW : PW
mwt =

ˆPW
mwt − µmwtδ

W
mwt + µmwtδ

W
mwt, ∀m, ∀w, t

PPV : PPV
mvt =

ˆPPV
mvt − µmvtδ

PV
mvt + µmvtδ

PV
mvt, ∀m, ∀v, t

PL : PL
mdt =

ˆPL
mdt − µmdtδ

L
mdt + µmdtδ

L
mdt, ∀m, ∀d, t

µmwt, µmwt, µmvt, µmvt, µmdt, µmdt ∈ [0, 1], ∀m, ∀w, v, d, t

NmW

∑
w=1

(
µmwt + µmwt

)
+

NmPV

∑
v=1

(
µmvt + µmvt

)
+

NmD

∑
d=1

(
µmdt + µmdt

)
≤ ΓP

mt, ∀m ∀t

ZG :
NT

∑
t=1

(
1− ZG

t

)
≤ ΓIS, ZG

t ∈ {0, 1}, ∀t

ZG
t ≤ 1− (ZG

t−1 − ZG
t ),

∀t ∈
[
1, min

(
NT , t + ΓIS − 1

)]}
(4)

X =
{

P, PPCC, PC, PD, PLS :

Pmin
mi umit ≤ Pmit ≤ Pmax

mi umit ∀m, ∀i, ∀t (5)

0 ≤ PC
mbt ≤ PC,max

mb ∀m, ∀b, ∀t (6)

0 ≤ PD
mbt ≤ PD,max

mb ∀m, ∀b, ∀t (7)

SOCmbt = SOCmb,t−1 + PC
mbtη

C
mb4t− PD

mbt
1

ηD
mb
4t ∀m, ∀b, ∀t (8)

SOCmin
mbt ≤ SOCmbt ≤ SOCmax

mbt ∀m, ∀b, ∀t (9)
NM

∑
m=1

(
NmG

∑
i=1

Pmit +
NmW

∑
w=1

PW
mwt +

NmPV

∑
v=1

PPV
mvt + PPCC

mt

+
NmB

∑
b=1

PD
mbt −

NmB

∑
b=1

PC
mbt

)
=

NM

∑
m=1

NmD

∑
d=1

(
PL

mdt − PLS
mdt

)
∀t (10)

−ZG
t PPCC,max

mt ≤ PPCC
mt ≤ ZG

t PPCC,max
mt ∀m, ∀t (11)

0 ≤ PLS
mdt ≤ αmdt%

ˆPL
mdt ∀m, ∀d, ∀t

}
(12)
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As to constraints, U represents the feasible region for the first-stage decisions, i.e., DG
commitment status. W represents the modeled uncertainty and X represents the feasi-
ble set for the second-stage decisions, i.e., the power at PCC, output of DGs and ESSs,
and load shedding.

In W, wind power, PV power, and loads are all modeled as bounded intervals, where
µ and µ are control variables for positive and negative forecast errors, separately. These
forecast errors are aggregated and controlled through a robust control parameter ΓP

mt ∈
[0, NmW + NmPV + NmD]. Given a ΓP

mt, the worst scenario happens when
⌊
ΓP

mt
⌋

of forecast
error control variables ( µ or µ) equal 1, i.e.,

⌊
ΓP

mt
⌋

of the uncertainties reach their upper
bounds or lower bounds, and one of the forecast-error control variables ( µ or µ) equals(
ΓP

mt −
⌊
ΓP

mt
⌋)

, i.e., one of the uncertainties varies up to
(
ΓP

mt −
⌊
ΓP

mt
⌋)

δ. With ΓP
mt = 0,

no forecast errors are considered, i.e., the robust optimization model is reduced to the
deterministic model. With ΓP

mt = NmW + NmPV + NmD, all uncertainties reach their upper
bounds or lower bounds, i.e., the solution is most conservative. By setting different values
for the robust control parameter ΓP

mt, the networked microgrids controller could obtain
solutions with various degrees of conservatism.

Similarly, ΓIS is a robust control parameter for the unintentional islanding condition,
which takes value in [0, NT ]. Given a ΓIS, the solution is guaranteed to be feasible and bot-
tom line for all possible scenarios in which up to ΓIS time intervals are islanded. If ΓIS = 0,
all ZG

t will be 1, i.e., no unintentional islanding happens, while if ΓIS = NT , the microgrids
are islanded all the time, leading to the most conservative solution. Without loss of general-
ity, it is also assumed that the microgrids will be reconnected to the utility grid until the
utility grid has been completely restored or the extreme event has passed. Thus, only one
unintentional islanding incident happens during the scheduling horizon. As mentioned
earlier, the grid-connection condition ZG

t is assumed as the same for all microgrids.
It should be noted that the presented two-stage robust optimization model for net-

worked microgrids scheduling is proposed for both grid-connected and islanded conditions.
Specifically, the grid-connection condition ZG

t is taken as an unknown variable (i.e., uncer-
tainty), constrained by a robust control parameter ΓIS. In practice, the networked microgrids
energy management is performed in two steps. First, the proposed networked microgrids
scheduling model determines the day-ahead commitment status of DGs without knowing
the grid-connection condition. Then, in the second step, the grid-connection condition is
revealed, and the networked microgrids dispatch DGs, ESSs, and responsive loads to meet
the power balance in real time. The two-stage robust optimization model is particularly
designed to hedge against the uncertainty in grid-connection conditions and guarantee the
networked microgrids operating continuously when switching between grid-connected
and islanded modes.

In X, the constraints of the networked microgrids scheduling problem includes the
power limits of DGs as in (5), charging and discharging power limits of ESSs as in (6)
and (7), maximum and minimum state of charge (SOC) of ESSs as in (9), power limits
at PCC as in (11), and maximum percentage of load shedding of each demand enforced
by constraint (12). In addition, the SOC of an ESS is defined as a function its charging
and discharging power as in (8). The total generation and load balance of the networked
microgrids is guaranteed by Equation (10). Please refer to [21] for more details about these
constraints. Note that ZG

t in (11) is a binary indicator of grid-connection condition, which
forces the PCC power to be zero if the networked microgrids are islanded. It should also
be noted that the first stage decisions hold for all scenarios, but the second stage decisions
are only for the identified worst scenario. In reality, it should be re-optimized after the
uncertainties are realized.

The presented robust optimization model for networked microgrids scheduling is
in mixed-integer linear form except SU

mit and SD
mit , which are the start-up and shut-down

costs of DGs, separately. Nevertheless, both SU
mit and SD

mit could be easily reformulated into
mixed-integer linear form. Please refer to [32] for details.
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3.2. Solution Algorithm

The proposed tri-level “min-max-min” model in (2)–(12) is presented in a compact
matrix form as in (13) to (14).

min
u∈U

{
AT

0 u + max
w∈W

min
x∈X(u,w)

BT
0 w + CT

0 x
}

(13)

X(u, w) =
{

x : AT
1 u + BT

1 w + CT
1 x = q1,

AT
2 u + BT

2 w + CT
2 x ≤ q2;

}
(14)

Note that the three optimization levels are nested together. To solve this problem,
the C&CG algorithm and Benders decomposition algorithm have been investigated in [33]
and [34], separately. The C&CG algorithm is employed to solve the proposed robust
optimization in this work due to proven fast convergence [33]. First of all, according to the
Karush-Kuhn-Tucker (KKT) conditions, the innermost “min” optimization is reformulated
as complementary constraints. Since this problem is linear, strong duality holds. The inner
“max-min” problem becomes a “max” problem. By Big-M method [35], the complementary
constraints could be equivalently transformed into mixed-integer linear form. By this
method, the original tri-level “min-max-min” problem is transformed into a bi-level “min-
max” problem.

In the C&CG algorithm, the bi-level “min-max” problem is decomposed into a “min”
master problem which optimizes the first- and second-stage decisions based on an increas-
ing set of worst-case scenarios identified by the subproblems, and a “max” subproblem
which determines the worst scenario based on the first-stage decisions determined by
the master problem. The master problem generates a lower bound (LB) for the bi-level
optimization problem since the set of worst scenarios are partial enumerations of the un-
certainty region W, while the subproblem problem generates an upper bound (UB) for
the bi-level optimization problem since the first-stage decisions determined by the master
problem are partial enumerations of U. The master problem and subproblem are solved
iteratively to narrow the gap between the upper and lower bounds until convergence.
A simplified flow chart of the solution process is presented in Figure 2. Please refer to [33]
for more details about the C&CG algorithm.

Figure 2. Solution process of the C&CG algorithm.
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4. Case Studies
4.1. Test System Data

The proposed model for networked microgrids scheduling considering the stochastic
unintentional islanding conditions was demonstrated using a modified Oak Ridge National
Laboratory (ORNL) Distributed Energy Control and Communication (DECC) networked
microgrids test system [36]. This system is consisted of three microgrids. Each microgrid
includes one or multiple dispatchable DGs, undispatchable DGs (i.e., wind turbine and/or
PV panel), and a battery, as shown in Figure 3.

Figure 3. Modified ORNL DECC networked microgrids test system.

The parameters of dispatchable DGs are listed in Table 1. The parameters of the battery
are listed in Table 2. Without loss of generality, the three batteries are assumed to have
the same capacity and parameters. Note that these DGs and batteries are the dispatchable
resources in the microgrid.

Table 1. Dispatchable DG parameters.

DG Type Pmin (kW) Pmax (kW) Start-Up Cost ($) Shut-Down
Cost ($)

Variable O&M
Cost ($/kWh)

Fixed O&M
Cost ($/h)

Diesel 1 20 60 3.5 1.75 0.3502 1

Diesel 2 20 60 3 1.5 0.5239 1

Diesel 3 20 60 2.5 1.25 0.6317 1

Microturbine 1 10 30 2 1 0.2885 1

Microturbine 2 10 30 2 1 0.4507 1

Microturbine 3 10 30 1.5 0.75 0.3885 1

Fuel Cell 10 30 1 0.5 0.3385 1
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Table 2. Battery parameters.

Battery Type Power Capacity (kW) Energy Capacity (kWh) SOCmax (%) SOCmin (%)

Lithium-Ion 50 100 95 25

Degradation Cost ($/kWh) Charging Efficiency (%) Discharging Efficiency (%) Initial SOC (%) End SOC (%)

0.02 0.95 0.95 50 50

A wind turbine with 60 kW rated capacity is installed in microgrid 1 and 2, respectively.
The wind power forecasted for the next 24-h scheduling horizon is listed in Table 3. The
forecast error of wind power is assumed as ±35%. Microgrid 2 and 3 also have 50 kW PV
panels installed separately. Similarly, the PV power forecasted for the next 24-h scheduling
horizon is listed in Table 4. The forecast error of PV power is also assumed as ±35%. Due to
geographical adjacency, the wind and PV power between microgrids are assumed to be
perfect positive correlated.

Table 3. Forecasted wind power.

Hour ˆPW (kW) Hour ˆPW (kW) Hour ˆPW (kW)

1 51.4829 9 21.7503 17 24.2732

2 38.3711 10 34.8202 18 26.2555

3 43.5590 11 27.1748 19 26.7732

4 40.7514 12 30.1965 20 26.2159

5 27.7421 13 23.5169 21 32.8428

6 30.1540 14 39.4794 22 36.0156

7 28.6452 15 35.738 23 37.2312

8 23.3767 16 18.0583 24 44.1215

Table 4. Forecasted PV power.

Hour ˆPPV (kW) Hour ˆPPV (kW) Hour ˆPPV (kW)

1 0 9 5.2978 17 14.1823

2 0 10 11.6044 18 4.6705

3 0 11 36.6382 19 0.1836

4 0 12 42.6778 20 0

5 0 13 35.2199 21 0

6 0 14 35.4594 22 0

7 0.1617 15 34.8303 23 0

8 1.7726 16 23.6244 24 0

The loads of the three microgrids are forecasted as in Figure 4. For each microgrid,
these forecasted values are equally divided into two loads (one critical load and one non-
critical load). Without loss of generality, a direct load control program is used as the
demand response program. The customers simply get paid for their curtailment based
on a linear penalty cost, i.e., value of lost load (VOLL). The VOLL is set as 2 $/kWh for
the critical load and 1.5 $/kWh for the non-critical load, separately. This will guarantee
the non-critical load gets curtailed before the critical load. The maximum percentage of
allowed shedding for both loads is set as 80%. The forecast errors of both loads are assumed
as ±9%.
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Figure 4. The total load of each microgrid.

The forecasted hourly utility rates are listed in Table 5. It is assumed that the three
microgrids have the same utility rates. For simplicity, the forecast errors of utility rates
have been neglected. The maximum power at PCC is set as 200 kW for each microgrid.

Table 5. Forecasted utility rates.

Hour λPCC (ct/kWh) Hour λPCC (ct/kWh) Hour λPCC (ct/kWh)

1 8.65 9 12.0 17 16.42

2 8.11 10 9.19 18 9.83

3 8.25 11 12.3 19 8.63

4 8.10 12 20.7 20 8.87

5 8.14 13 26.82 21 8.35

6 8.13 14 27.35 22 16.44

7 8.34 15 13.81 23 16.19

8 9.35 16 17.31 24 8.87

The scheduling horizon is assumed for one day, i.e., 24 h, with hourly time intervals.
The optimization model is programmed in MATLAB and solved by the mixed-integer
linear programming (MILP) solver CPLEX 12.6 [37]. By setting the maximum allowed gap
between the upper and lower bounds as 0.1, it generally takes less than 10 iterations for the
C&CG algorithm to converge.

4.2. Advantages of Networked Microgrids

For simplicity, the robust control parameter for the unintentional islanding condi-
tion is normalized as γIS = ΓIS/NT . Thus, γIS = 0 means no unintentional islanding is
allowed and γIS = 1 means the networked microgrids are islanded all the time. Simi-
larly, we normalized the robust control parameter for renewable generation and load as
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γP
m = ΓP

mt/(NmW + NmPV + NmD) and assumed γP
m is consistent for all microgrids and all

time intervals. Therefore, γP
m = 0 indicates that no uncertainties of renewable generation

and load are considered. On the contrary, γP
m = 1 means all uncertainties of renewable

generation and load are considered, i.e., the solution is robust to all uncertainties.
To demonstrate the advantages of networked microgrids over independent microgrids,

setting γP
m = 0.5, the total operating cost and amount of load shedding for networked mi-

crogrids and independent microgrids under various values of γIS are calculated separately.
The results are compared in Figure 5. First, when γIS increases, more loads are served by
DGs to mitigate the impact of lost PCC power in case of unintentional islanding. Thus,
the total cost increases, i.e., the resilience of microgrids is improved at the cost of increased
operating cost. If committed DGs and ESSs are not sufficient, certain loads are shed as the
last resort, as shown in Figure 5b. This holds for both networked microgrids and indepen-
dent microgrids. Second, compared with independent microgrids, both the total operating
cost and amount of load shedding of the networked microgrids are significantly reduced
when γIS > 0 , i.e., unintentional islanding happens. This result verifies the advantages
of networked microgrids over independent microgrids in terms of both economics and
resilience under the worst-case scenarios.

(a) (b)

Figure 5. Comparison of total operating cost and amount of load shedding between networked
microgrids and independent microgrids under various values of γIS. (a) Total operating cost. (b) Total
load shedding.

4.3. Convergence of C&CG Algorithm

To investigate the solution efficiency of the C&CG algorithm in large and networked
microgrids, the total number of iterations needed for convergence of the C&CG algorithm
under the cases of both independent microgrids and networked microgrids are compared
in Figure 6. As can be seen, the C&CG algorithm converges in less than 10 iterations for all
cases. In particular, the number of iterations needed for convergence of the C&CG algorithm
does not increase as the number of microgrids is tripled, i.e., the solution efficiency of the
C&CG algorithm is robust to the number of microgrids in the system.

4.4. Example Solutions of C&CG Algorithm

The robust optimal dispatch of networked microgrids and the worst scenario of
unintentional islanding condition when γIS = 0.25 and γP = 0.5 are shown in Figure 7.
As can be seen, in the worst scenario, the networked microgrids are islanded from hour
5 to hour 10, i.e., the PCC power is forced to be 0 during these 6 h. To get prepared for
this islanding situation, the ESSs are charged to their maximum SOC (i.e., 95%) before
islanding. Once the islanding happens, the PCC power is instantaneously forced to be 0.
The ESSs start to discharge to mitigate the losing power at PCC. Meanwhile, the DGs also
increase their power outputs. By the end of the islanding time periods, the ESSs have been
discharged to their minimum SOC (i.e., 25%). As a result, load shedding is still performed
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during certain hours. The total PCC power, total output power of DGs, total battery SOC,
and load shedding decisions are shown in Figure 7.

Figure 6. Comparison of iterations needed for convergence of the C&CG algorithm between net-
worked microgrids and independent microgrids under various values of γIS.

Figure 7. Total PCC power, output power of DGs, total battery SOC, and load shedding decisions of
networked microgrids under γIS = 0.25, γP = 0.5.

To show the coordination between microgrids, especially during the islanded time
periods, the PCC power of each microgrid and the total PCC power of networked micro-
grids are compared in Figure 8. As can be seen, all three microgrids import power from the
utility grid when they are grid-connected. When islanded during hours 5–10, microgrid 1
imports power from both microgrid 2 and microgrid 3. Nevertheless, the total PCC power
of networked microgrids remains at 0 during the islanded time periods. During hours 5–7,
microgrid 2 is lightly loaded as shown in Figure 4. Thus, power is exported from microgrid
2 to microgrids 1 and 3. However, the load of microgrid 2 increases rapidly during hours
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8–10. Under this situation, microgrid 3 starts to export power to microgrids 1 and 2. Due
to these kinds of interactions between microgrids, both the total operating cost and the
amount of load shedding of the networked microgrids are significantly reduced.

4.5. Stochastic Evaluation of Independent Microgrids and Networked Microgrids

In this subsection, the results of robust optimization for independent microgrids
and networked microgrids are evaluated and compared. For this purpose, PW

wt , PPV
vt , PL

dt,
and ZG

t are modeled as random variables with known probability distribution functions,
based on which a test set of 1000 scenarios is constructed through Monte Carlo simulation.
Traditionally, load PL

dt could be modeled as a Gaussian distribution [38]. Wind power PW
wt is

modeled as a Gaussian distribution or Weibull distribution [39]. PV output PPV
vt is modeled

as a Gaussian distribution or β distribution [40]. In each scenario, the loads are assumed to
have a Gaussian distribution with mean ˆPL

mdt and standard deviation δL
mdt/3. The PV and

wind power are also assumed to have a Gaussian distribution with mean ˆPPV
mvt and ˆPW

mvt,
and standard deviation δPV

mvt and δW
mvt, separately. The occurrence time of unintentional

islanding is assumed to have a uniform distribution along the scheduling horizon. Once
the occurrence time is determined, the duration of the unintentional islanding is assumed
as a uniform distribution between 1 and the uncertainty budget ΓIS.

Figure 8. PCC power of individual microgrids and networked microgrids under γIS = 0.25, γP = 0.5.

In the first case, we set γIS = 0.25 and γP = 0.5; i.e., the uncertainty budget of
unintentional islanding condition is set as γIS × NT = 6 hours. Then, the robust optimiza-
tion model is solved for independent microgrids and networked microgrids, separately.
Next, for each test scenario, the first stage decisions, i.e., the commitment status of DGs,
of both independent microgrids and networked microgrids are evaluated. The step-by-step
procedures of this study are summarized as follows:

Step 1: Set the uncertainty budget of unintentional islanding condition γIS and uncertainty
budget of renewable generation and load γP.

Step 2: Solve the robust optimization model for networked microgrids and each indepen-
dent microgrid separately.

Step 3: Generate the test set of 1000 scenarios.
Step 4: For networked microgrids, fix the commitment status of DGs and conduct Monte

Carlo simulation for each test scenario.
Step 5: For each independent microgrid, fix the commitment status of DGs and conduct

Monte Carlo simulation for each test scenario.
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Step 6: Collect the total operating costs and load shedding costs for further comparison
and analysis.

The total operating cost and load shedding cost are collected and compared in Figure 9.
The minimum, maximum, and average value of the total operating cost of independent
microgrids and networked microgrids are compared and shown in Figure 9a. As can
be seen, the networked microgrids outperform independent microgrids in terms of both
average cost and the total cost in the worst scenario. The minimum, maximum, and average
value of the load shedding cost of independent microgrids and networked microgrids are
compared and shown in Figure 9b. As can be seen, the networked microgrids outperform
independent microgrids in terms of both the average load shedding cost and the load
shedding cost in the worst scenario.

(a) (b)

Figure 9. Comparison of total operating cost and load shedding cost of independent and networked
microgrids under γIS = 0.25 and γP = 0.5. (a) Total operating cost. (b) Load shedding cost.

In the second case, we set γIS = 0.5 and γP = 0.5, i.e., the uncertainty budget of
the unintentional islanding condition is set as γIS × NT = 12 h. Similarly, a test set of
1000 scenarios is constructed through Monte Carlo simulation. Then, the robust optimiza-
tion model is solved for independent microgrids and networked microgrids, separately.
Next, for each test scenario, the first stage decisions, i.e., the commitment status of DGs,
of both independent microgrids and networked microgrids are evaluated. The total operat-
ing cost and load shedding cost are collected and compared in Figure 10. The minimum,
maximum, and average value of the total operating cost of independent microgrids and
networked microgrids are compared and shown in Figure 10a. As can be seen, the total
operating costs of both independent microgrids and networked microgrids increase as
longer islanding durations are considered. Nevertheless, networked microgrids outperform
independent microgrids significantly in terms of both average cost and the total cost in
the worst scenario. The minimum, maximum, and average value of the load shedding
cost of independent microgrids and networked microgrids are compared and shown in
Figure 10b. As can be seen, both load shedding costs increase as longer islanding durations
are considered. Still, networked microgrids outperform independent microgrids in terms
of both the average load shedding cost and the load shedding cost in the worst scenario.

It should be noted that the optimality of the solution obtained by the robust optimiza-
tion cannot be guaranteed. In fact, the robust optimization tends to take a conservative
action to handle the modeled uncertainties by turning on more DGs. Thus, stochastic
optimization usually outperforms robust optimization in terms of average cost. However,
stochastic optimization is subject to incur huge costs in high-impact, low-probability (HILP)
scenarios. In contrast, robust optimization is designed to optimize the cost in the worst
scenario and thus can significantly improve the system performance in HILP scenarios, i.e.,
improve the system resilience. In other words, robust optimization tends to sacrifice certain
optimality for resilience. Nevertheless, with properly chosen robust control parameters,
the solution obtained by robust optimization can ensure both resilience and near-optimality.
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By the central limit theorem, when a large number (N) of independent random variables
are aggregated, the volatility scales according to O

(√
N
)

. Therefore, a proper level of the

normalized robust control parameter should be chosen close to O
(√

N
)

/N [34]. An ad-
vanced approach, which reduces conservativeness by removing the ineffective parts of the
uncertainty set, was recently proposed in [41].

(a) (b)

Figure 10. Comparison of total operating cost and load shedding cost of independent and networked
microgrids under γIS = 0.5 and γP = 0.5. (a) Total operating cost. (b) Load shedding cost.

5. Conclusions

In this paper, a two-stage adaptive robust optimization model is proposed for net-
worked microgrid scheduling considering the stochastic unintentional islanding conditions
and conventional forecast errors of both renewable generation and loads. By coordinating
the dispatch of DERs and responsive demand among multiple networked microgrids,
the total cost, including the operating cost of DERs, the cost of trading power with the
utility grid, and the cost associated with load shedding, is minimized. The C&CG algorithm
has been employed to solve the proposed optimization problem efficiently.

The correctness and effectiveness of the proposed approach was demonstrated through
case studies on a modified ORNL DECC networked microgrid test system, consisting of
three microgrids. Compared with the results of independent microgrids, it has been proven
that both the total operating cost and the amount of load shedding of networked microgrids
are significantly reduced when γIS > 0 , i.e., unintentional islanding happens. In the worst
scenario, the total cost could be reduced more than 10%. Meanwhile, the amount of load
shedding could be reduced to 15%. In addition, results of Monte Carlo simulation verified
that networked microgrids outperformed independent microgrids significantly in terms of
both average cost and average load shedding.

It has also been approved that the solution efficiency of the C&CG algorithm is robust
to the number of microgrids in the system. Future works include expanding the islanding
capability from a simple power balance constraint to a power flow constraint and dynamic
stability constraint. In addition, distributed optimization algorithms, which could preserve
the privacy of customers and enable plug-and-play of microgrids, will be investigated.
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Nomenclature

The main symbols used in this paper are defined below. Others will be defined as required in
the text. A bold symbol stands for its corresponding vector/matrix.

Indices
i Index of dispatchable generators in microgrid m, running from 1 to NmG.
d Index of loads in microgrid m, running from 1 to NmD.
b Index of batteries in microgrid m, running from 1 to NmB.
w Index of wind turbines in microgrid m, running from 1 to NmW .
v Index of PV in microgrid m, running from 1 to NmPV
t Index of time intervals, running from 1 to NT .
m Index of microgrids, running from 1 to NM.
k Index of iterations.
Variables
Binary Variables
umit 1 if unit i in microgrid m is scheduled on during period t and 0 otherwise.
ZG

t 1 if microgrids are grid-connected and 0 otherwise.
Continuous Variables
Pmit Power output of unit i during period t.
PPCC

mt Power at point of common coupling (PCC) of microgrid m during period t.
PC

mbt, PD
mbt Charging/discharging power of battery b during period t.

SOCmbt State of charge (SOC) of battery b during period t.
PW

mwt Power output of wind turbine w during period t.
PPV

mvt Power output of PV panel v during period t.
PL

mdt Power consumption scheduled for load d during period t.
PLS

mdt Load shedding of load d during period t.
µmwt, µmwt Auxiliary variables for forecast error of wind power PW

mwt.
µmvt, µmvt Auxiliary variables for forecast error of PV power PPV

mwt.
µmdt, µmdt Auxiliary variables for forecast error of load PL

mdt.
Constants
Cmbt Degradation cost of battery b during period t.
CON

mit Fixed operation and maintenance (O&M) cost of DG i during period t.
λmit Variable O&M cost of DG i during period t.
λPCC

mt Utility rate of microgrid m during period t.
Pmax

mi , Pmin
mi Maximum/minimum output of DG i.

PPCC,max
mt Maximum PCC power of microgrid m during period t.
ˆPW

mwt Forecasted power output of wind turbine w during period t.
ˆPPV

mvt Forecasted power output of PV panel v during period t.
ˆPL

mdt Forecasted consumption of load d during period t.
PC,max

mb , PD,max
mb Maximum charging/discharging power of battery b.

SOCmax
mbt , SOCmin

mbt Maximum/minimum state of charge of battery b during period t.
ηC

mb, ηD
mb Battery charging/discharging efficiency factor.

δW
mwt, δPV

mvt, δL
mdt Maximum deviations from the nominal forecast values ˆPW

mwt,
ˆPPV

mvt, and ˆPL
mdt.

ΓP
mt Robust control parameter of renewable generation and demand during

period t.
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γP
mt Normalized robust control parameter of renewable generation and demand

during period t.
ΓIS Robust control parameter of unintentional islanding conditions.
γIS Normalized robust control parameter of unintentional islanding conditions.
4t Time duration of each period.
αmdt Maximum percentage of allowed shedding of demand d during period t.
ε Maximum optimality gap for convergence.
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