
 

 

1 

Abstract—The resilient responses of networked microgrids 
(MGs) can greatly improve the survival of critical loads during 
extreme events. In order to efficiently handle the scarce data 
issue as well as improve the adaptability of deep reinforcement 
learning (DRL) methods for complex sequential extreme events 
(SEEs) such as hurricanes and tornadoes, a new learning-based 
method is proposed for the survival of critical loads in MGs dur-
ing SEEs. A generative adversarial network (GAN) is applied to 
generate a sufficient extreme event-related database in a model-
free way. Specifically, a self-attention GAN (SA-GAN) is devel-
oped to capture sequential features of the SEE process. Then, the 
SA-GAN is integrated into a DRL framework, and the corre-
sponding Markov decision process (MDP) and the environment 
are designed to realize adaptive networked MG reconfiguration 
for the survival of critical loads. Faced with uncertain distributed 
generator (DG) output and sequential line damage, the SA-GAN-
DRL method provides an adaptive model-free solution to contin-
uously supply critical loads during SEEs. The effectiveness of the 
proposed method is validated using a 7-bus test system and the 
IEEE 123-bus system, and the results demonstrate both a strong 
learning ability with limited practice data, and robustness and 
adaptability for highly changeable SEE processes. 

Index Terms—Self-attention, deep reinforcement learning 
(DRL), microgrids (MGs), distributed generator (DG), generative 
adversarial network (GAN). 

I.  INTRODUCTION 
HE extensive damage and subsequent outages within 
power systems caused by high-impact and low-probability 

extreme events indicate the necessity of enhancing power sys-
tem resilience [1-2]. Networked microgrids (MGs) or multiple 
MGs, core components in a distributed system, are essential 
for enhancing the operational flexibility and efficiency of the 
distributed system (DS), and they offer promising solutions for 
power grids to withstand unplanned catastrophic events [3]. 
The networked MGs are self-supported MGs with the ability 
to provide supports to each other via reconfigurations. With 
their distributed but coordinated feature, they reduce the im-
pact of cascading events and enhance the survival of smart 
grid critical loads. A DS with distributed energy resources 
(DERs) or distributed generators (DGs) can transform into a 
networked MG in preparation for extreme events [4]. Net-
worked MGs can benefit from the survival of critical loads 
based on strategic management of local DGs as well as mutual 
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assistance among MGs [5], [6]. Finally, networked MGs help 
achieve bottom-up restoration by supplying available local 
power sources for system restoration [7]. This paper focuses 
on the flexible reconfiguration of networked MGs as a resili-
ent defense strategy during sequential extreme events (SEEs).  

SEEs, e.g., hurricanes and tornadoes, pass through an area 
sequentially and regionally [8], and consequently lead to on-
going damage to power grid infrastructures such as generators 
and lines. Due to the changing environment, resilient defenses 
for SEEs are highly related to system conditions. Faced with 
subsequent damages, ref. [5] enhanced the survival of critical 
loads by minimizing MG scales and allowing both radial and 
looped MG networks. Ref. [9] provided a stochastic pro-
gramming model to re-configure networked MGs with the 
goal of maximizing continuous load supply according to oc-
curred fault conditions. Refs. [8] and [10] took the hurricane 
track as a Markov decision process (MDP), integrated it into 
energy dispatching models, and then applied stochastic and 
robust optimization methods to provide solutions, respectively. 
A multi-stage and multi-zone-based uncertainty set was de-
signed for a SEE process in [11], and two-stage robust optimi-
zation was applied to minimize load shedding under extreme 
events. 

Mathematical model-based methods use stochastic pro-
gramming or robust optimization to handle uncertain condi-
tions, while some advanced machine learning methods [12]-
[20] can give solutions which are naturally adaptive for uncer-
tain events. Convolutional neural networks (CNNs) [12] have 
provided satisfying model-free solutions to handle uncertain 
power supplies in contingency screening [13] and uncertain 
load restoration [14]. Regarding energy dispatch [15] and con-
trol [16] problems with dynamic Markov features, deep rein-
forcement learning (DRL) methods have been widely used for 
decision-making. Equipped with imitation learning, DRL 
method handled real-time service restoration issues in resilient 
distribution systems [17]. Ref. [18] proposed a batch con-
strained DRL to realize a data-driven dynamic distribution 
network reconfiguration. A DRL method with distributed 
training was applied in [19] to solve large-scale networked 
MG power management problems. By continuously interact-
ing with the environment and obtaining feedback [21], the 
DRL method has shown the adaptability which is necessary 
for dealing with SEEs. However, the data under extreme 
events suffers scarcity issues [22]-[24]. system data from 
SEEs is much harder to obtain than system data from normal 
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cases. The scarcity of SEE system data could negatively affect 
DRL training processes, and efficient training is critical to 
ensure reliable DRL applications [17]-[19]. Therefore, in order 
to ensure reliable implementation with limited histori-
cal/practical data, the DRL method needs further improvement. 

A direct solution is to reasonably extend the original dataset. 
Under a SEE process, the uncertainties in renewable resources 
and dynamic line outage damage conditions are key to the 
proper resilient reactions of smart grids [8]-[10]. The SEE-
related dataset contains high-dimensional information and 
reflects the time-varying nature of weather as well as complex 
energy conversion processes which make it difficult for pre-
cise analysis via model-based methods. However, generative 
adversarial networks (GANs) [25], as an un-supervised model-
free method, can automatically extract data features without 
labeling. With an outstanding capability for learning data 
properties, GANs have been applied to generate renewable 
scenarios [26], distinguish power grid outage data [22] and 
improve event classification [27]. For the SEE-related data, 
GANs can extend the dataset by generating new and credible 
extra data sets that capture the intrinsic features of the original 
data. The GAN enhanced datasets can further benefit the per-
formance of DRL. 

For the purpose of enhancing resilience during a SEE pro-
cess, this paper proposes a self-attention GAN enhanced DRL 
(SA-GAN-DRL) method for survival of critical loads by flex-
ibly reconfiguring networked MGs. First, the Wasserstein 
GAN (WGAN) is applied to organize an adversarial training 
process for data feature extraction. Then, the self-attention 
GAN (SA-GAN) is further developed using Attention Mecha-
nism to properly generate data with strong sequential features, 
e.g., line damage data. Finally, the SA-GAN is equipped into a 
reinforcement learning architecture called double deep Q-
network (DDQN), and an environment is designed to train the 
SA-GAN-DDQN. 

The contributions of this paper can be summarized as fol-
lows: 1) A new learning-based resilient defense scheme is 
proposed for networked MGs against SEEs. Accordingly, 
networked MGs can provide adaptive reconfiguration strate-
gies to ensure survival of critical loads during dynamic ex-
treme weather events. 2) The datasets of uncertain DG (wind-
DG and solar DG) outputs and line damage conditions, which 
are of particular interests in extreme event related resilience 
studies, are extended to reduce data scarcity. Without any ad-
ditional data analysis efforts, the originally limited historical 
data is reasonably and credibly extended using un-supervised 
model-free GAN based methods. The original GAN is further 
improved to formulate a customized SA-GAN which has a 
stronger ability to learn from sequential data in an MDP. 3) 
With a combination of the DRL method with GAN based data 
extension approach, the proposed SA-GAN-DRL method im-
proves the application performance of original DRL algo-
rithms. With more stable feasible actions and higher reward 
values, the SA-GAN-DRL has improved adaptability when 
applied to dynamic SEE conditions such that the resilience of 
networked MGs can be further enhanced during SEEs. 

The rest of this paper is organized as follows: Section II in-

troduces the adversarial nets framework of the GAN, the ar-
chitecture of the developed SA-GAN, and the generative 
learning process of GAN method. The SA-GAN enhanced 
DDQN method and the designed training environment are 
presented in Section III for enhancing networked MG resili-
ence. Section IV provides case study results on a 7-bus DS 
and the IEEE 123-bus DS with multiple MGs, followed by the 
conclusions in Section V. 

II.  GAN BASED DATASET PROCESSING FOR RESILIENT 
NETWORKED MGS UNDER SEES  

GAN-based data extension is introduced in this section. 
First, the adversarial learning principle and structure of a clas-
sical GAN are presented. Then, the self-attention module is 
built and incorporated into the GAN to form the SA-GAN. 
Finally, the training data organization and learning algorithm 
are introduced. 

A.  Review of Wasserstein GAN 
A GAN is an adversarial nets framework for estimating 

generative models via an adversarial process. As shown in Fig. 
1, a GAN contains two deep neural networks: a generative 
model Generator that captures the data distribution, and a dis-
criminative model Discriminator that estimates the probability 
that a sample came from the training data rather than the Gen-
erator [19]. For dataset extension, the goal of a GAN is to 
learn the features of the original dataset by figuring out a 
mapping relationship from a known distribution Z (such as a 

Gaussian distribution) to a targeted sample dataset (experi-
ence/history) that follows a distribution X. The function of 

the GAN relies on the adversarial process, which is formulated 
as a game-theoretic two-player nested min-max optimization 
of the Generator and Discriminator. As long as the GAN is 
well-trained, the Generator is able to capture historical data 
features and extend the dataset for DRL training. Theoretically, 
a GAN can generate samples without any size limit. 

The WGAN is an efficient GAN architecture that improves 
training stability. It provides a Wasserstein metric-based loss 
function to describe the quality of the generated samples [26], 
which helps resolve the model collapse issue. Therefore, the 
GAN in this paper follows the WGAN structure which is in-
troduced below. 
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Fig. 1. Structure of GAN 

 
1) Generator 
The Generator is trained to transform a random noise sig-
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nal Z with distribution Z (Z ~ Z) in to generated artificial 

data Xfake. Z is the input of the Generator’s deep neural net-
work with learning parameters θG, and G(z) is the correspond-
ing output. The Generator implicitly defines a probability 
distribution G as the distribution of the samples G(z) obtained 

when Z ~ Z). 

( )fake G= ;X G Z θ                                       (1) 

2) Discriminator 
The Discriminator is trained to distinguish between fake 

data produced by the Generator from the real data in the his-
torical dataset. Suppose θD denotes the learning parameters of 
the Discriminator. The input samples X, either real data Xreal or 
fake data Xfake. The output is a probability pdis ranging from 0 
to 1, measuring to what extent the input samples belong to a 
real dataset.  

( )dis D= ;p D X θ                          (2) 

3) Value Function V (G, D) 
In order to complete the training, loss functions are needed 

to guide the updating of Generator and Discriminator parame-
ters. According to the WGAN [28], the loss function LG and 
LD can be designed as (3) and (4).  

( )( )G;
G Z

L D G = −  Z θ                     (3) 

( )( ) ( )D real G; ;
Z X

   = −   DL D G Z θ D X θ   (4) 

In the adversarial process, the generator intends to mini-
mize the expectation of -D(G(·)) because a large discriminator 
output pdis representing the sample is similar to the real data. 
The discriminator tries to provide a small pdis for the fake data 
by minimizing the expectation of D(G(·)), while giving a large 
pdis by maximizing the expectation of D(X) when the input is 
real data. Accordingly, the adversarial process forms a two-
player min-max game with the value function V (G, D). 

( )
( )( ) ( )D real G

min max ,

; ;

  
G D

Z X
   = −   

V G D

D G Z θ D X θ 
   (5) 

B.  Proposed SA-GAN 
The behavior of a GAN relies on the Generator and Dis-

criminator which are essentially deep neural networks. There-
fore, various machine learning models can be embedded into 
their constructions. The WGAN applies a CNN because of 
CNNs’ outstanding learning behavior. However, a CNN only 
processes information in a local neighborhood, therefore using 
convolutional layers alone is computationally inefficient for 
modeling long-range dependencies of practice data. Therefore, 
a SA-GAN is further developed using the Attention Mecha-
nism [29] to form a self-attention module which enables both 
the Generator and the Discriminator to efficiently model non-
local relationships.  

The SA-GAN was originally developed for image genera-
tion tasks [30]. For targeted resilient networked MGs under an 
SEE, the self-attention module of the SA-GAN can help the 

MGs to better learn the sequential features of system data in 
the whole SEE process. Therefore, a SA-GAN with custom-
ized architecture is proposed to generate a SEE-related dataset. 
The SA module and the architectures of the proposed SA-
GAN are shown in Fig. 2 and Fig. 3, respectively. 
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Fig. 2. Structure of self-attention module 

 
The input data x (x∈RN×C) from the previous layer are first 

transformed into Query, Key and Value layers to calculate the 
attention. Convolutions with kernel size 1 are applied to form 
Query (Q = Wfx), Key (K = Wgx) and Value (V = Whx) ma-
trixes with the shape N × C where N = W × H. Then, the ma-
trix dot product and softmax function (6) are used to generate 
an attention map, with the shape N × N. 
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ij
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                            (6) 

where βj, i indicates the extent to which the model attends to 
the ith location when the jth region is synthesized. The corre-
sponding attention map describes each pixel’s attention score 
on every other pixel. Then, attention weights are obtained by 
the matrix dot product of V and the attention map. The atten-
tion weights describe each pixel’s total attention score 
throughout all pixels. Holding this feature, they are further 
reshaped to be self-attention feature maps a with shape W × H 
× C.  

Finally, a learnable scalar γ initializing as 0 is set to multi-
ply the output of the attention layer and add back the input 
feature map. The output of the self-attention module is (7). 

       γ=y a + x                                (7) 
The learnable scalar γ causes the self-attention module to 

do nothing initially, before gradually learning to assign more 
weight to non-local evidence. The learnable scalar γ benefits 
the learning process by learning the easy task first and pro-
gressively increasing the complexity of the task [30].  

Two elements are concerned in an event related changeable 
environment: uncertain DG output (wind power and photovol-
taics (PV) in this paper), and line damage conditions. Accord-
ingly, the historical database contains one-day (24 hours) wind 
PW and solar PPV DG outputs, and line damage data DLine. Set 
N as the number of DGs, loads and affected lines in the event 
tracks, the input data [PW; PPV; DLine] for the Discriminator is 
a matrix with size [N, 24, 1] where the first three numbers are 
the height, width and channels. 

Taking the input size [24, 24, 1] for an example, Fig. 3 
shows the data processing of the SA-GAN. The Generator 
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starts with a fully connected layer (F-con) for up-sampling. 
Then, the first de-convolutional layer (De-cov1) has, with fil-
ters, the size [4, 4, 1, 128] where the first three numbers are 
the height, width, and depth of each filter and the last one is 
the number of filters. The filter of De-conv2 has the size [4, 4, 
128, 64]. Hence, the output of De-conv2 has the size [24, 24, 
64], and it goes through the SA module. The SA module re-
mains the same size and it further provides output using a 
convolutional layer Conv1 with a filter sized at [4, 4, 64, 1]. 
Similarly, the Discriminator has a reversed construction with 
4 convolutional (Conv) layers which have filter sizes [3, 3, 1, 
16], [3, 3, 16, 32], [3, 3, 32, 64] and [3, 3, 64, 128] for Conv1 
to Conv4, respectively. 
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Fig. 3. Architecture of SA-GAN 

 
To conclude, the Generator and Discriminator of the SA-

GAN are designed as shown in Fig. 3. The Generator contains 
2 De-con/(transposed convolutions) layers and 1 Conv layer to 
up-sample the input noise z with size [1, 100, 1] to the output  
G(z) with the size [28, 28, 1], while the Discriminator includes 
4 convolutional layers to down-sample the input with size [28, 
28, 1] to the output pdis. The self-attention modules are em-
bedded into the de-convolutional/convolutional layers to en-
hance the non-local observation. 

C.  Training process of SA-GAN for data generation 
As long as the GAN is well-trained, the Generator is able to 

capture event-related features and extend the dataset for DRL 
training. The adversarial training process of the SA-GAN is 
implemented using Algorithm 1 which is a non-parametric 
unsupervised learning process without pre-defined labeling. 

In the training process, the Generator attempts to generate 
fake samples with the highest possible value of D(G(z))) to 
fool the Discriminator, while the Discriminator tries to tell the 
difference between practical/historical samples and generated 
fake ones. Generator and Discriminator construction parame-
ters update continuously during training episodes, representing 
a fierce competition between D and G to improve themselves. 
Eventually, the Discriminator converges to similar output val-
ues for D(G(z)) and D(x), which means the Discriminator 
identifies the tiny difference between the real data and the fake 
data, and the Generator creates realistic event-related samples.  

Training is implemented in a batch-updating style, while a 
gradient descent algorithm RMSProp with a self-adjustable 
learning rate is applied for weighted updates of the Discrimi-

nator and Generator neural networks. Clipping is also applied 
to constrain D(x; θ(D )) to satisfy certain technical conditions as 
well as to prevent gradient explosion [28]. 

 
Algorithm 1: Training process of SA-GAN 
Require: Sample/real DG output and line damage data 
from historical sample database Xreal 

Require: Learning rate α, batch size M, number of itera-
tions for discriminator D per generator G iteration nD, ini-
tial learning parameters for D and G, θD and θG. 
While θD has not converged do 
    for t = 0, . . . , nD do 
        Sample a batch {Xreal 

i }M 
i=1 ~ X from the historical data. 

Sample a batch {Z 
i}M 

i=1 ~ Z from Gaussian distribution. 

( )( ) ( )realM M

1 1

1 1

M M
D D
θ θ = =

 
← ∇ − 

 
∑ ∑i ii i

g D G Z D X (8) 

( ),D D D DDRMSProp θθ θ θ← − ⋅α g                      (9) 

( ), ,D DClip c cθ θ← −                           (10) 

end for 

( )( )M

1

1

M
G G
θ θ =

 
← ∇ − 

 
∑ ii

g D G Z              (11) 

( ),G G G GDRMSProp θθ θ θ← − ⋅α g         (12) 

end while 
 
The completion of Algorithm 1 shows that the proposed 

SA-GAN is able to reasonably and credibly extend sequential 
DG output and line damage data. The well-trained Generator 
is extracted to generate enhanced training data for the DRL of 
resilient networked MGs against SEEs. The application of the 
SA-GAN as well as its combination with the DRL method is 
introduced in next section. 

III.  SA-GAN-DRL FOR SURVIVAL OF CRITICAL LOADS  
This section introduces the complete SA-GAN-DRL meth-

od. First, the dynamic reconfiguration of networked MGs is 
formulated to fit into a DDQN form. Then, a detailed reward 
function design and environment for networked MG reconfig-
uration is introduced. Finally, the entire GAN-enhanced DRL 
framework is concluded. 

A.  DDQN-based reconfiguration strategy for survival of 
critical loads 
During the SEE process, an efficient way to reduce the im-

pacts of events is to ensure the survival of critical loads, which 
is a sequential decision-making problem in a multi-step MDP. 
At each step, a topology configuration is determined to ensure 
critical loads are safely supplied under the current system 
power supply-demand conditions and line damages.  

In the MDP, the state is the system P-Q condition and to-
pology condition [P; Q; Dtopo] where Dtopo is the system topol-
ogy considering the last step switch status and current line 
damages. The action is the on/off decision of remotely con-
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trolled switches (RCSs) and the reward is the grid security 
condition after taking an action in a state. The DDQN method 
is applied to provide an adaptive reconfiguration strategy for 
survival of critical load during the SEE process. 

The DQN method is a combination of deep neural networks 
and Q-learning, which updates the action-value function itera-
tively [31]. In this paper, a CNN is used to organize Q net-
works. The objective of Q-learning is to estimate the value for 
an optimal policy. Accordingly, the agent (operator) can de-
cide how to optimally perform actions by learning the Q val-
ues (Q(.)). The Q network is updated with a loss function rep-
resenting the mean-squared temporal difference error, as 
shown in (13). 

( ) ( ) ( )
+1

+1 +1max Q , Q ,
2

0,  1

L θ γ θ θ

                                                        γ

 = + −  
 ∈  

t
t t t t tA

r S A S A (13) 

where St, At and rt are the state, action and reward at step t, 
respectively, γ is the discount factor, and θ represents the pa-
rameters which organize the Q network. 
 

Algorithm 2: DDQN learning process  
Initialize Q network and T-Q network with same random 

weights and bias. Initial replay memory. Set Dstep = 0. Set 
batch size, Episode M, step number T and Epsilon-greedy 
parameters. 
S1: for Episode from 0 to M do 

Initialize s the environment 
for Step from 1 to T do 

Perform Epsilon-greedy method and obtain αstep.  
Execute αstep in the environment and obtain the 
reward value.  
Organize new state Sstep+1.  
Add record [Sstep, αstep+1, rstep+1, Sstep+1, Dstep,] in 
memory. 
 If topology is infeasible do 
    Update T-Q as Q 
    Break; 

           End if 
If conditions for replay are satisfied do 
    Train Q network (Q-CNN) 
    If Step = T do 
          Update T-Q as Q 
    End if 
End if 

       End for 
End for 

S2: Obtain the Q network. 
 

With two separated Q networks, the DDQN method im-
proves on the original DQN method by decoupling the action 
selection and action evaluation [32]. The original Q network is 
used to select the action with the maximum Q value while the 
T-Q network evaluates the Q value of the selected action. The 
T-Q network is a fixed network which is not updated in the Q 
network updating process. The fixed feature enhances effi-
ciency and stability in the learning process. The loss function 

(13) is adjusted into (14) accordingly. 

( )
( )

( ) ( )
+1

+1 +1

, = T) otherwise, 

max T - , ,

2

2

 (

Tar
L

θ
θ

γ θ θ

 − =   + −   t

t t t

t

t t t t tA

r Q S A t

r Q S A Q S A
(14) 

where T is the total number of steps. 
According to (14), defining a suitable reward function is an 

indispensable part of completing the learning process for DRL 
methods. For the adaptive reconfiguration of networked MGs, 
the action (reconfiguration strategy) should first ensure that 
the critical loads have access to available DGs. Further, the 
security constraints such as voltage and branch flow limits 
should be considered to ensure critical loads can be success-
fully supplied. 

Algorithm 2 shows the learning process of the DDQN in a 
compact form. A detailed version of the process can be found 
in [1], [32]. 

B.  Design Reward and Environment 
The reward function (15) is designed to help determine the 

Q network for the survival of critical loads problem supported 
by adaptive reconfiguration.  

( )
( ) ( )
( )

con AC con

con con

, ,   S 1
,

                                S 0

 − == 
=

∑t t t t
t t t

t

f f
r

f
S

P
A

Qα α

α
(15) 

where Scon is the signal showing whether the topology is feasi-
ble, and fAC,i(.) is the function related to AC power flow results. 
If Scon = 1 (topology feasible), fcon(.) provides the reward w; 
otherwise, fcon (.) gives punishment –w. The feasible topology 
should ensure each critical load is supplied by at least one DG 
and there are no RCSs switched on in damaged lines. This part 
will be introduced in detail in the following environment 
building step. The variable fAC,i(.) consists of voltage violation 
pvol,j, system power loss ploss,i, branch overflow pbran,l, and 
power unbalance fpb(.). This is given by (16) 

( )

( )

AC vol, loss

bran, pb

, ,

                         ,
∈

∈

= +

+ +

∑

∑

t t t j
j node

l t t
l bran

f p p

p f

P Q

P

α

α
            (16a) 

( )pb L, loss DG,,
∈ ∈

= + −∑ ∑t t j j
j load j DG

f p p pP α              (16b) 

Specifically, in the learning process, the penalties in the re-
ward are divided into hard constraints and soft constraints. 
The hard constraints are reflected by fcon (.) which leads to an 
MDP “game over” if it is triggered (Scon = 1). The soft con-
straints are the other penalties which reduce the reward value 
instead of triggering an immediate “game over”.  
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Fig. 4 Interaction of agent and environment 
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As shown in Fig. 4, the reward is calculated based on envi-

ronmental the feedback. The environment, which contains a 
graph-theory-based connectivity (topology) check and an AC 
power flow calculation, simulates the system conditions after 
the Q network generated action is applied. After clearing the 
connectivity check module ensuring each critical load is sup-
plied, AC power flow will be performed in a newly updated 
networked MG system. The process of implementing that en-
vironment is shown in Algorithm 3. 

 
Algorithm 3: Environment implementation 
Require: Select critical load set Lcri. Obtain current state St 
and extract DG output PDG, t, load amount Lt and destroyed 
lines Dt for current step. Obtain action At from the agent. 
Set k = 1. Initialize MG list as an empty set {} 
If switch on destroyed lines then 

Topology infeasible 
Else: 

While i in DG node set do: 
If DG nodes i has not been recorded then 

           Search from DG nodes i and label nodes connected 
to i. Record all the nodes in set MGk connected to 
DG nodes i and extend MG list with MGk. 

            k = k + 1 
        If all the DG nodes have been labeled: 
            Break 
    Check critical node set Lcri 
    If any nodes in Lcri are not recorded: 

Topology infeasible 
Else: 

Topology feasible 
Get updated MG list {MG1,…MGk-1}  

If Topology feasible then 
Perform AC power flow for updated MGs in the MG list 
Record power flow result 

Else: 
Game over and stop the MDP at step t. 

Obtain the reward at step t according to (15), and form St+1 
 

C.  GAN-enhanced DQN 
The whole framework of the GAN enhanced DRL method 

is concluded in Fig. 5. First, the initial training data, which can 
be either historical or forecast data in a sequential Markov 
form, is used to perform the SA-GAN training process. As 
long as the generative learning process Algorithm 1 converg-
es, the Generator is obtained to generate enhanced training 
data for the deep RL method. The SA-GAN extracts event 
related features such that it can generate enough SEE-related 
scenarios without the limitation of scarce event data.  

The DDQN method is performed using the enhanced train-
ing data. Algorithm 2 and Algorithm 3 are performed as the 
pre-training processes such that the Q-network may capture 
the topology and power flow related features of the networked 
MGs under the SEE process. Finally, the agent containing the 
well-trained Q network is obtained. Accordingly, the agent 

can give corresponding reconfiguration strategies regarding 
current DG output, load amount, and line damage conditions. 
This is called adaptive reconfiguration because the agent can 
flexibly adjust network configurations for the survival of criti-
cal loads based on event conditions. 
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Note that the SA-GAN-DDQN method can have a model-

free application since the well-trained agent does not need 
system models to provide proper actions. Moreover, the SA-
GAN can be further improved by incorporating newly updated 
event and system information if the training conditions are 
trigged. Through fast-generated adaptive reconfiguration of 
networked MGs, the purpose of the proposed method is to 
ensure that each critical load is safely supplied under uncertain 
conditions during the SEE process. The SA-GAN-DRL meth-
od can also be used in other DRL methods 

IV.  Case Study 
This section introduces the training and application perfor-

mances of the proposed GAN enhanced DRL method. First, 
the data generation performances of GAN methods are shown 
and the improvement of the SA-GAN is presented by compar-
ing with the original GAN [22], [26]. Then, the functions of 
the SA-GAN for the DRL method are demonstrated by com-
paring the original DDQN [1] and the SA-GAN enhanced 
DDQN.  

Two systems are used: the two DGs integrated 7-bus system 
and twelve DGs integrated IEEE 123-bus system. The time 
horizon is set as 24 steps (24 hours), and each network recon-
figuration step is set as 1 hour. The DRL codes and the corre-
sponding environment are written and compiled in Python 3.7. 
Neural networks are built using TensorFlow 2.2 and Keras 2.4. 
Pypower 5.1 is applied to solve the power flow calculations in 
the environment. All simulations were conducted on a com-
puter with Intel(R) Core (TM) i7-8550U CPU and 16 GB 
RAM. All the GAN related models in this paper are trained 
using the RmsProp optimizer with a mini-batch size of 32, 
while the DQN related models are trained using the Adam 
optimizer with a mini-batch size of 30. 

A.  SA-GAN based data processing 
The generated data are divided into two categories. The first 

category is the uncertain sources: DGs (wind power and PVs) 
output. The second category is the hurricane track with se-
quentially damaged lines. 
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The wind and solar datasets are obtained from the NREL 
Wind and Solar database [33], [34]. A total of 12 wind farms 
and 12 solar power plants located in the north-western part of 
Texas are selected. One-day data with one-hour intervals is 
taken as an example, and 100 samples are extracted from the 
summer period (June - August) as the training and validating 
datasets.  

The line damage data is generated following some sequen-
tial features of hurricanes. The sequential and regional proper-
ties [8], [11] are considered in this paper: 

1) The line damages have sequential features. For in-
stance, lines L4 and L6 are possibly damaged lines only if line 
L2 is destroyed. Lines L5 and L7 are possibly damaged only if 
L6 is destroyed. Lines will be not recovered in the considered 
time-horizon as long as they are destroyed.  

2) Several possible paths exist. Since it is difficult to fore-
cast the exact hurricane path, the trace is assumed to have two 
branches in each time interval (D1-D3). 8 steps and 6 steps are 
taken as a time interval for the 7-bus system and the IEEE 
123-bus system, respectively. Further, the hurricane will even-
tually go through one path which means either line L4 or line 
L6 is destroyed, and either line L5 or line L7 is destroyed. 

3) The probability of line damage is gradually reduced. 
There is an 80% chance that lines in D1 will be destroyed, 
while the chances that lines in D2 and D3 will be destroyed 
are respectively 70% and 60%, respectively. The hurricane 
will eventually go through one path or the other, which means 
either L4 or L6 and either L5 or L7 are destroyed. 
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Fig. 6. Line outage conditions under hurricane 

 
In a 24-step process, the statuses of the potential damaged 

lines are represented using 0 and 1 (0 for unimpacted lines and 
1 for destroyed lines). Following the previous properties 1)-3), 
100 samples of line outage conditions under hurricanes are 
generated.  

In this paper, the GAN based method learns from 100 sam-
ples and generates 300 samples using a well-trained Generator. 
Note that the GAN is able to generate a database with any 
sizes. 
1) Uncertain power supply 

Both the original GAN and SA-GAN have good perfor-
mance in generating uncertain power supply data. Fig. 7 and 
Fig. 8 compare the original historical data set and the SA-
GAN-generated one. Therein, the green lines denote detailed 
one-day samples of wind turbine (WT)-DG output and PV 
output. By providing one-day samples with shapes similar to 
the historical ones, the SA-GAN shows the ability to capture 
the data feature. This is especially obvious for the PV output 
in Fig.7 which is near to zero at night and reaches the maxi-
mum output at noon.  
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Fig. 7. PV outputs of historical and SA-GAN generated data 
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Fig. 8. WT-DG outputs of historical and SA-GAN generated data 

Furthermore, the GAN-generated samples are reasonable 
extensions of the original data features. The red and blue 
curves in Fig. 7 (a) and Fig. 8 (a) respectively represent the 
upper and lower bounds of historical samples and SA-GAN-
generated ones, while the red and blue lines in Fig. 7 (b) and 
Fig. 8 (b) show the mean values of historical and GAN sam-
ples, respectively. As can be observed, the upper and lower 
bounds of SA-GAN generated data almost contain the histori-
cal ones. Meanwhile, mean values of SA-GAN generated data 
and the historical data are similar. Therefore, the SA-GAN 
enhances the robustness of the database by considering possi-
ble extra scenarios with statistical properties similar to the 
original database. GAN data with more statistically similar 
properties can be found in [26]. 

2) Sequential damaged line data 
For the line damage data with much stronger time-series 

features in a long horizon, the constructed SA-GAN has a bet-
ter performance than the original GAN in [22], [26]. 
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Fig. 9. Training evolution for GAN and SA-GAN on a line damage dataset 
 

Fig. 9 shows the training processes of the GAN and SA-
GAN. At start, the loss values of the Discriminator (blue, D) 
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and the Generator (red, G) have large fluctuations as well as 
differences. As the training progresses, the losses of the SA-
GAN in Fig. 9 (b) converge to relatively stable values with the 
Wasserstein distance (green, W) close to zero, while the origi-
nal GAN in Fig. 9 (a) still shows large fluctuations with the 
same training iterations. These indicate that the SA-GAN can 
be successfully trained to learn underlying data features in 
historical datasets while the GAN fails to provide an efficient 
generator. 

Taking the hurricane track in Fig. 6 as an example, 100 line 
damage samples are generated using the GAN and SA-GAN 
Generators. The no-repeat line damage conditions extracted 
from these samples are demonstrated in Fig. 10 and Fig. 11 
with ‘stars’ showing the outage time. As seen in Fig. 10, four 
typical conditions in the training dataset were learned by the 
GAN, while there are six possible line damage conditions in 
Fig. 6. In addition, the inefficient training process of the GAN 
leads to some unreasonable samples. In Fig. 10, the GAN gen-
erates samples with line outages in different paths, e.g., Lines 
L4 and L6 as well as L4 and L7 cannot all be destroyed in one 
hurricane path. Compared with the GAN, the SA-GAN gener-
ates all the theoretically possible line damage conditions. Fur-
ther, the typical conditions are expanded by adjusting line out-
age time and holding the sequential features at the same time. 
This enables the generated samples to enhance the robustness 
and adaptability of the DRL method when they are fed into the 
DRL training process. 
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Fig. 10. GAN-generated line damage samples (no-repeat conditions in 100 

samples) 
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B.  SA-GAN-DRL for survival of critical loads in the 7-bus 
& 123-bus systems 
The SA-GAN is integrated in the DDQN method and the 

whole SA-GAN-DRL method is tested in the 7-bus system 
and IEEE 123-bus system. The historical dataset is divided 
into a training dataset with 80% samples and a testing dataset 
with 20% samples. The SA-GAN-DRL method was trained 
with a SA-GAN generated dataset, while the original DRL 
method was trained using historical training data. Test results 

of the SA-GAN-DRL method are compared with the DDQN 
method in [1]. 
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Fig. 12. The 7-bus system 

 
Taking one hurricane path as an example, the distribution 

system lines will be damaged sequentially as shown in Fig. 13. 
The RCSs are equipped between in L1, L4 and L5. Fig. 13 
presents the configurations of networked MGs over 24 h. The 
GAN enhanced Q network provides an adaptive reconfigura-
tion scheme to hold critical loads. As shown in Fig. 13, L2 is 
damaged first. Therefore, the critical load, Load3, which is 
initially supplied by MG2 in Fig. 6, is transformed to MG1 in 
Fig. 13 (a). As the SEE evolves, switches in damaged lines are 
opened as shown in Fig. 13 (b) and (d). Based on DG outputs 
and network conditions during the whole SEE process, the 
GAN enhanced Q network flexibly transfers the paths of criti-
cal load supplies and avoids switches on damaged lines.  
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Fig. 13. Reconfiguration of networked MGs in one day 
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Fig. 14. Rewards of testing samples of 7-bus system 

 
Using testing samples, the performance of the SA-GAN-

DRL method (trained with GAN enhanced data) is compared 
with the original DRL method (trained with the initial data). 
Although most of the reward values are similar, there are some 
cases in which the SA-GAN-DRL framework (pink curve in 
Fig. 14) has greater reward values than the original DRL 
method (blue curve in Fig. 14). Since the reward is related to 
power balance, voltage security and power losses, a higher 
reward value means a better power dispatch across the whole 
system of networked MGs. Moreover, the proposed method 
ensures that all critical loads can be served with at least one 
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available power source across the entire 480 steps (i.e., hours) 
of 20 samples, while the original DRL method fails to find a 
solution to supply some critical loads under two samples. 
Therefore, the SA-GAN-DRL method shows stronger robust-
ness and better adaptability than the original DRL method 
according to the test results. 

The performances of extending training datasets using GAN 
is shown in Fig. 15. Agent performances of applying different 
numbers (50, 100, 200, and 300) of GAN generated samples 
are shown using reward values during 480 test steps. As 
shown in the figure, the amount of critical loads shedding 
(with ab-normal low reward value -1) is reduced as the num-
ber of samples increases. The average reward value increases 
from 0.9458 to 0.9807 when the sample number increases 
from 50 to 300, which means a better power dispatch across 
the whole system using DRL decision results. Therefore, more 
useful training data generated by GAN can improve the appli-
cation performance of DRL. 
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Fig. 15. Performances of training DRL with different number of GAN 

methods generated samples 
 
In addition to the original dataset, 20 out of example sam-

ples with 240 steps are tested. They are generated with 20% 
fluctuation s from the boundaries of the source database. The 
performance of DDQN and SA-GAN-DDQN are shown in Fig. 
16 below. Although the tested scenarios are not included in the 
original dataset, DDQN successfully provided reasonable ac-
tions in 156 of 240 steps, while SA-GAN-DDQN improved 
the number of reasonable actions to 226 steps. In other words, 
the DDQN itself can provide some adaptivity for some out of 
example cases, but the ability is limited. Using our proposed 
GAN based dataset extension, the adaptivity of DDQN can be 
further enhanced to satisfy more out of example cases. 
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Fig. 16. Performances of SA-GAN-DRL in scenarios not included in the 

source database 
 
Fig. 13 shows the MG formation changes under a SEE. The 

mutual assistance among MGs is more obvious in the large-
scale IEEE 123-bus system, which is divided into five net-
worked MGs as shown in Fig. 17. Figs. 18 (a) and (b) show 

the training process of the SA-GAN-DDQN in the IEEE 123-
bus system. 16 actions are designed for the network adjust-
ment of networked MGs. The number of steps for each epi-
sode with successful survival of critical loads is shown in Fig. 
18 (a). 24-hour load survival means a successful adaptive re-
silient defense of networked MGs, while any incorrect switch 
actions (lost critical loads or switches on damaged lines) in the 
process directly lead to the end of an episode. Well-trained Q 
networks are obtained after 850 episodes. The relatively stable 
24-step load surviving at the end of the training process 
demonstrates that the SA-GAN-DRL method successfully 
learned how to form feasible topologies for the purposes of 
survival of critical load by providing on/off switch decisions 
in the dynamic SEE process. 
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Fig. 17. Reconfiguration of networked MGs in one day 

 
The training result of the IEEE 123-bus system is tested to 

show the benefit of the proposed method. In the 480 test steps 
in Fig. 19, the SA-GAN-DRL method, with an average reward 
value of 1.93, realizes more effective energy dispatch than the 
DRL method, which has an average reward value 1.90. That is 
because the two methods have different learning results. Un-
der the same SEE condition (DG outputs and line damage 
conditions), the resilient defenses of the DRL method and 
GAN-DRL method are shown in Fig. 20.  
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Fig. 19. Rewards of testing samples of the IEEE 123-bus system 

 
In Fig. 20, the original system in Fig. 17 is transformed into 

a compact form by forming load and DG blocks. Therein, red 
nodes contain DGs, green nodes contain loads, and the black 
nodes contain buses without DGs or loads. Specifically, green 
nodes with red numbers represent critical loads. With line 
damages shown in the figure, both methods have learned to 
hold critical loads through mutual assistance among MG3, 
MG4 and MG5. However, the GAN-DRL scheme obtains 
higher reward value by connecting MG1 and MG2. Although 
this action does not benefit the survival of critical load, it re-
duces power losses and improves energy consuming efficiency. 
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Fig. 20. Resilient responses of GAN-DRL and DRL 

 
Overall, the SA-GAN-DRL method improves the adaptabil-

ity of the original DRL method in two aspects:  
• It provides more stable feasible actions. As shown in Fig. 

14, when the action of the DRL method cannot form a fea-
sible topology with a reward value of -1, the SA-GAN-
DRL method gives feasible actions.  

• It provides actions with better performance. As shown in 
Fig. 19, when the actions of both methods are feasible, the 
SA-GAN-DRL actions normally have higher reward values. 

The proposed SA-GAN-DRL method is compared with op-
timization-based methods. A widely used mixed-integer linear 
programming (MILP) model [4] and an accurate mixed-
integer second-order conic programming (MISOCP) model 
[35] are employed. To compare the performance of different 
methods, the objective value is set as the supplied load amount 
minus power losses in the entire system. Fig. 21 shows the 
objective values from different methods during a complete 24 
steps Markov process. The process is realized by recursively 
applying MILP and MISOCP models in each step. The data-
driven MILP may lead to better performance and higher accu-
racy. As listed in Table I, the MILP model has satisfactory 
computational speed, however, the result has a large optimiza-
tion gap because of the relatively rough relaxation of power 
flow as well as power losses. The accurate MISOCP model 
provides the highest objective value, however, the computa-
tion time is much longer than the other two methods. If com-
pared with the optimization methods, our proposed method 
has extremely fast computation time of 0.091 s and acceptable 
optimization gap of only 1.81%.  
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 Fig. 21. Rewards of testing samples of the IEEE 123-bus system 
 

 TABLE I 
COMPARISONS WITH OPTIMIZATION-BASED METHODS 

Method Computation 
time (s) 

Objective 
value (MW) 

Optimization 
gap 

MILP 3.57  1169.46 10.29% 
MISOCP 778.86  1303.53 -- 

SA-GAN-DRL 0.09  1279.91 1.81% 
 

V.  Conclusion 
The changeable environment and power system conditions 

during the SEE process require high adaptability of the resili-
ent response scheme. To improve grid resilience during the 
SEE process, this paper proposes a DRL method enhanced by 
the SA-GAN to ensure survival of critical load using net-
worked MGs. The GAN is developed with the Attention 
Mechanism to better learn the sequential features of system 
data in the entire SEE process. Further, the DRL method is 
equipped with the SA-GAN to implement efficient learning 
with limited data. According to the case studies, the proposed 
SA-GAN reasonably extends the dataset by generating new 
and distinct extra data that captures the intrinsic features of the 
original data, and the proposed SA-GAN-DRL method pro-
vides robust and adaptive scheme for the survival of critical 
load during SEE processes.  
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