Distribution Congestion Management by Using CVSR Devices: Optimization and Clustering

Okan Ciftci, Kevin Tomsovic
The University of Tennessee, Knoxville

INTRODUCTION:

- A continuously variable series reactor (CVSR) is series of line reactor for power-flow control in meshed power grids.
- High load density networks (i.e., spot networks, secondary networks) should be highly reliable to sustain the system following a contingency.
- Grid network transformers play an important role for these spot networks.
- Relief overload power on supply transformers can be accomplished via CVSRs.

Fig. 2 CVSR Device

PIECEWISE OPTIMIZATION AND CLUSTERING APPROACH

- Calculations by linear optimization may give large errors since assumption is made on the sensitivity curves.
- Therefore, piecewise linearization can be a solution for more accurate transformer sensitivities.
- System can be divided into clusters as seen in the figure.

Fig. 3: Linear Optimization Converted to Piecewise Optimization

Fig. 4: Cluster method to obtain all transformer sensitivities

Xhl23 (ohm)	Xhl24 (ohm)	P23 by OpenDSS	P23 by Sensitivities	P24 by OpenDS S	P24 by Sensitivities	Transformer Limits
4.76	4.76	1133.96 kVA	1133.96 kVA	944.72 kVA	944.72 kVA	No Limit
$4.76+1.283$	$4.76+0$	999.11	1000	981.11	980.757	1000
$4.76+1.997$	$4.76+0.529$	947.48	950	947.07	950	950
$4.76+2.88$	$4.76+1.364$	892.84	900	891.88	900	900

Table I: 4-Segment Piecewise Optimization Results for IEEE 342 Test System

CONCLUSION

- Transformer sensitivity analysis helped us to determine the device specifications.
- Piecewise optimization results are close to the benchmark results.
- Optimization results shows the effect of CVSR devices.
- Clustering approach reduces the computational time.

