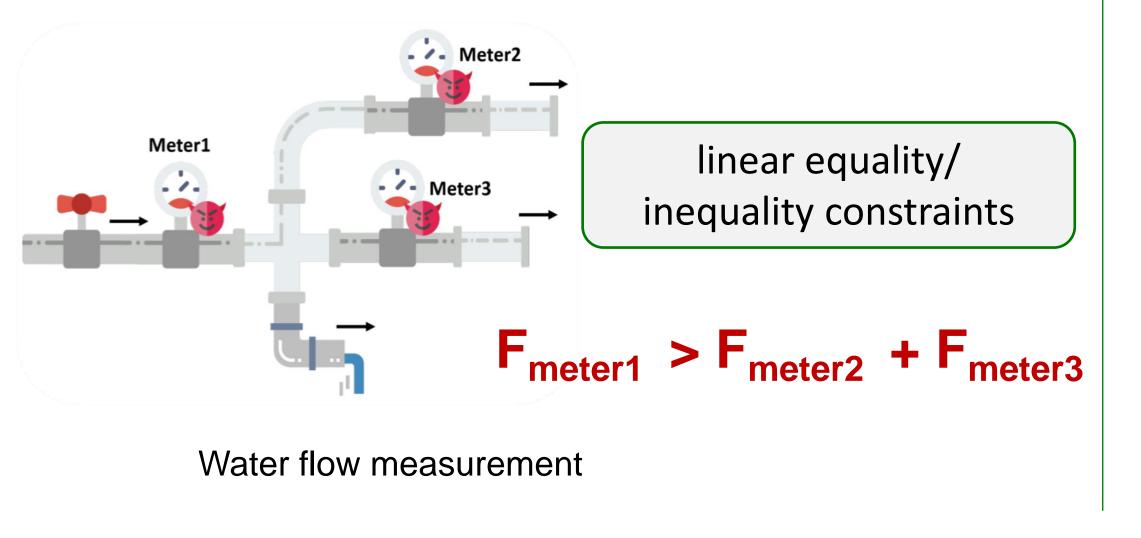


Exploring Physical-Based Constraints in Short-Term Load Forecasting: A Defense Mechanism Against Cyberattack


Mojtaba Dezvarei¹, Kevin Tomsoic¹, Jinyuan Stella Sun¹, Seddik M. Djouadi¹ ¹ The University of Tennessee, Knoxville

INTRODUTION

- Short Term Load Forecasting (STLF) is to forecast the load for a short time horizon concerned with scheduling
 purposes, from one hour to one week ahead.
- Among input variables, temperature plays key role for STLF as many loads are sensitive to temperatures, such as, heating and cooling.
- As temperature is obtained by third party services/AP, it is vulnerable to data disruptions and cyberattack.
 - More challenging as the attacker may benefit from AI/ML methods to skip detection scheme.

- Physical-based constraints can provide obstacles that makes attacks more difficult.
- Attacker needs to meet the constraints imposed by the physical/topology of system and evade any built-in detection mechanisms in the system.

PROPOSED APPROACH

- The physical/topology information in STLF is not apparent like Kirchhoff's laws.
- Spatial distribution of load forecasting zones is considered to investigate the relation between the different zones to derive constraint.
- An index representing variations between load zones by time series similarity measures may

 Considering the temperature as a targeted variable, attacker seeks to solve following for being undetectable:

$$\min_{\tilde{X}} H_{\theta}(\tilde{X})$$

$$s.t. \quad \left\| X - \tilde{X} \right\|_{p} \le \epsilon \implies \text{Detection scheme constraints}$$

$$+ q(\tilde{X}) \le 0 \implies \text{Physical-based constraint}$$

- Adding g(x) obtained by physical/topological information of STLF increases complexity of the problem that attacker needs to solve for a successful malicious action.
 - *H* is attacker simulated forecasting model parameterized by θ .
 - \circ \tilde{X}, X are the injected and actual temperature data.
 - \circ ϵ threshold value for detection scheme.
- Correlation-based distance: $d_{COR}(X,Y) = \sqrt{2(1 COR(X,Y))}$
- Periodogram-based distance: $d_p(X, Y) = \sqrt{\sum_{j=1}^{\left[\frac{N}{2}\right]} [\rho_x(\omega_j) \rho_y(\omega_j)^2]}$
- Autocorrelation-based distance: $d_{ACF}(X,Y) = \sqrt{(\hat{\rho}_{X_T} \hat{\rho}_{Y_T})^T \Omega (\hat{\rho}_{X_T} \hat{\rho}_{Y_T})}$
- Symbolic representation SAX: Time series transforming into a string.
- Euclidean-based distance: $d_{EUC}(X,Y) = \sqrt{\sum_{j=0}^{N-1} (x_i y_i)^2}$

challenge the attacker to meet that.

SIMULATION RESULT

- Case study
 - o ERCOT historical summer load
 - o 8 weather-based zones
 - Considered two West and FarWest stations
- STLF Model
 - Multiple Linear Regression (MLR)

 $f_{1} = \beta_{0} + \beta_{1}T + \beta_{2}H + \beta_{3}D + \beta_{4}LL_{1w} + \beta_{5}LL_{2w}$

 $f_2 = \beta_0 + \beta_1 DH + \beta_2 MT + \beta_3 MT^2 + \beta_3 MT^3 + \beta_4 HT + \beta_5 HT^2 + \beta_6 HT^3$

D, M, and H: day of the week (excluding the weekend) month of the year, and hour of the day, T: temperature ,LL1w and LL2w: one and two-week lagged load data.

• Injected *N*(0,1) to West zone temperature.

Method		No False Injection		False Injection	
	No Model	f_1	f_2	f_1	f_2
d_{ECU}	110644.5	110587.1	110675.4	110652.9	110602.3
d_{COR}	0.3204611	0.3183464	0.2687631	0.326226	0.2826415
d_{ACF}	1.247954	1.146977	1.015968	1.149789	1.040784
d_p	0.1336534	0.1309215	0.1109201	0.1273667	0.1091463
d_{SAX}	2.004495	1.735943	1.417392	2.454994	1.002247

- Proposed a framework to spatially investigate STLF for a defense mechanism.
- Applied similarity measures to explore physicalbased constraint.
- Outperformance of SAX method, showing more sensitivity to false data injection.

