

Fourier Analysis and Optimization of Inductive Wireless Power Transfer for Electric Vehicle Charging

Andrew Foote^{1,2}, Daniel Costinett¹, Ruediger Kusch³, Mostak Mohammad⁴, Omer Onar⁴ ¹ University of Tennessee, Knoxville ³ Volkswagen Group AG ⁴ Oak Ridge National Laboratory

MOTIVATION

- Improve the power level and performance of wireless power transfer (WPT) for electric vehicles
- High power levels (120kW+) with high eff. and low stray field (<15 μ T for pacemakers) needed to compare with DC Fast charging

CHALLENGES

- Coil geometry has significant impact on system efficiency and stray field
- Difficult or time-consuming to parameterize coil geometries in FEA

Freq.

Corrito

This work Gen. 2 DD/ 120kW	125mm	0.42m x 0.54m 530kW/m ² 4.1kW/kg	At 101kW 2.8μT, 4.1μT	96.6% DC/DC	89kHz
ORNL DD/ 120kW	125mm	0.88m x 0.67m 195kW/m² 2.3kW/kg	At 11kW 19.1μT, 12.3μT	97.1% DC/DC	25kHz
ETH Zurich Rect./ 50kW	160mm	0.76m x 0.41m 160kW/m ² 3.2kW/kg	At 50kW N/A , 22.5μT	95.8% DC/DC	85kHz

80cm – X,Y

Power Density

Airgap

Power Level

Efficiency

