

A Heterogeneous Multiscale Method for Power System Simulation Considering Electromagnetic Transients

Kaiyang Huang¹, Min Xiong¹, Yang Liu², Kai Sun¹, Feng Qiu² ¹The University of Tennessee, Knoxville ²Argonne National Lab

MOTIVATION

- EMT simulation is time-consuming, as the model based on detailed component modeling is highly stiff.
- Very few papers have concerned the methodology for multiscale simulations of power systems considering EMT dynamics.

CHALLENGES

 Dynamic is very stiff, lack of necessary information for time averaging switch between different time-scale.

STEP OF PROPOSED HMM ALGORITHM

- Estimation of macro effective force:
- Reconstruct information from the macro-model.
- Solve micro-model (EMT) based on the micro

$$\overline{f}(t_n + \Delta t) \approx \widetilde{f}_n = \widetilde{f}(t_n + \Delta t) = K_{\eta}^{p,q} * f_{\varepsilon}(t_n + \Delta t)$$

• Evolve the macro dynamics X^{n+1} for the next step: $X^{(n+1)} = \sum_{k=m}^{n} A_k X^{(k)} + H \sum_{k=m}^{n} B_k \tilde{f}_n + CX^*$

solver. Repeat the whole process.

> Apply time averaging to the micro-model:

COMPONENT SIZE

RESULTS

Converter size reduction @ different topologies

Converter size reduction @ different applications

CONCLUSION

- Apply the HMM to power system simulation to balance micro and macro dynamics in EMT simulation.
- HMM provides a general adaptive flexible frame to simulate a stiff system, time performance is improved as well as accuracy is preserved.
- For such an 8-second simulation, the ground truth EMT simulation shown before is used to compare with the HMM-based simulation. HMM-based simulation is finished with 80.931170s and RK4 one is 121.932214s which implies the power of HMM, a 33.63% speedup is achieved as a much larger time step is adopted during the macro simulations.

FUTURE WORK

- Apply a semi-analytical method in the micro process to speed up the simulation.
- Apply an adaptive step change to increase the time performance.

