A Heterogeneous Multiscale Method for Power System Simulation Considering Electromagnetic

Kaiyang Huang ${ }^{1}$, Min Xiong ${ }^{1}$, Yang Liu ${ }^{2}$, Kai Sun ${ }^{1}$, Feng Qiu ${ }^{2}$
${ }^{1}$ The University of Tennessee, Knoxville ${ }^{2}$ Argonne National Lab

MOTIVATION

- EMT simulation is time-consuming, as the model based on detailed component modeling is highly stiff.
- Very few papers have concerned the methodology for multiscale simulations of power systems considering EMT dynamics.

CHALLENGES

- Dynamic is very stiff, lack of necessary information for time averaging switch between different time-scale .

STEP OF PROPOSED HMM ALGORITHM

- Estimation of macro effective force:
> Reconstruct information from the macro-model.
> Solve micro-model (EMT) based on the micro solver.
> Apply time averaging to the micro-model:

COMPONENT SIZE

$$
\bar{f}\left(t_{n}+\Delta t\right) \approx \tilde{f}_{n}=\tilde{f}\left(t_{n}+\Delta t\right)=K_{n}^{p, q} * f_{\varepsilon}\left(t_{n}+\Delta t\right)
$$

- Evolve the macro dynamics X^{n+} for the next step:

System Topology

$$
X^{(n+1)}=\sum_{k=1}^{n} A_{k} X^{(k)}+H \sum_{k=m}^{n} B_{k} \tilde{f}_{n}+C X^{m}
$$

- Repeat the whole process.

