

A Converter-Based Battery Energy Storage System **Emulator for the Controller Testing of a Microgrid** with Dynamic Boundaries and Multiple Source Locations

Dingrui Li¹, Yiwei Ma¹, Chengwen Zhang¹, He Yin¹, Ray Ishita¹, Yu Su¹, Lin Zhu¹, Fred Wang^{1,2}, Leon Tolbert¹ ²Oak Ridge National Laboratory

¹The University of Tennessee, Knoxville

Background and Motivation

- Microgrid (MG) with dynamic boundaries and multiple source locations is a future MG concept that can bring more local flexibility and resiliency
- Controller is a core component in a MG ullet
- Converter-based hardware testbed (HTB) can provide a practical testing environment for MG controller testing
- No suitable BESS emulator is available for controller HTB testing of the MG with dynamic boundaries and multiple source locations

BESS Emulator Development

Requirements of different functions in the MG controller are lacksquareconsidered in the development of BESS emulator

Function type	Function block
Long-time functions	Energy management
	PV/ load forecasting
Steady-state functions	Finite state machine
	PQ balancing
	Planned islanding control
Transition functions	Reconnection control
	Black start

Converter-based HTB

- HTB utilizes a power circulating structure
- MG components are emulated by power converters
- Actual MG controllers are placed in the loop for testing \bullet

HTB Structure

MG HTB Control Architecture

MG with Dynamic Boundaries and Multiple Source Locations

Protection coordination

Experimental Demonstration

- Developed BESS emulator is validated on HTB first
- The developed BESS is used to support the MG controller testing

- Microgrid boundary can be expanded or shrunk based on available DER power
- Multiple islands can be formed in the islanded mode
- This microgrid has more complicated transitions
- Microgrid controller functions include long-time functions, steady-state functions and transition functions

BESS emulator's frequency regulation function

Reconnection testing of MG controller on HTB

Conclusion

- A BESS emulator is developed for controller HTB testing of a MG • with dynamic boundaries and multiple source locations
- The BESS emulator can support different operation conditions ${\bullet}$
- Practical environments of HTB are considered in the development

