

Design Of An Air Duct Cooling System In A Medium Voltage MMC Phase Leg

Min Lin¹, Ruirui Chen¹, Dingrui Li¹, Leon Tolbert¹, Fred Wang^{1,2} ¹ The University of Tennessee, Knoxville ² Oak Ridge National Laboratory

Motivation:

- An efficient cooling system to dissipate the heat generated by SiC devices
- Promote the implementation of high voltage SiC in medium voltage converter application
- Detailed numerical calculation and FEM simulation to guide future cooling design

Challenges:

- Sufficient isolation between low voltage cooling system and high voltage SiC devices
- Compact cooling design that does not compromise converter power density
- Uniform flow rate for individual submodules to prevent overheating

Crisscross shape airduct:

Fan situated at section where the air flows in, and the air passes

through a T-type fitting and then a 90° bend to four outlets.

• Major loss is caused by friction within a pipe:

$$\Delta P_{major} = \sum f \times \frac{L}{D} \times \frac{1}{2} \rho V^2$$

• Minor loss occurs at the change of section, valve, bend:

$$\Delta P_{minor} = \sum k \times \frac{1}{2} \rho V^2$$

TABLE I - FLOW RATE IN CRISSCROSS AIRDUCT

Section	Volume flow rate (m3/s)	Width×Height (m×m)	Actual flow rate (m/s)	Minor loss (Pa)	Minor loss coefficient
1-2	0.188	0.12x0.1	15.67	147.27	1
2-3	0.094	0.12x0.1	7.83	36.82	1
3-4	0.047	0.1x0.1	4.70	19.88	1.5

Slanted airduct:

- Tapered shape to ensure equal flow rate at each outlet
- Static pressure in the airduct stays the same
- Dynamic pressure loss from the beginning to the end of the duct is equal to the total pressure loss of the whole air duct

$$\frac{\rho}{2}(V_0^2 - V^2) = \sum (\Delta p_m l + \Delta P_i)$$

TABLE II - FLOW RATE IN SLANTED AIRDUCT

Crisscross shape airduct

Cross section No	Volume flow rate $L(m^3/h)$	Dynamic pressure $P_d(Pa)$	Static pressure P _i (Pa)	Air flow velocity V(m/s)	section area $A(m^2)$
1	866.3	21.6	46.1	6	0.04
2	649.7	20.85	46.1	5.88	0.0306
3	433.2	20.03	46.1	5.78	0.0208
4	216.6	19.03	46.1	5.64	0.0107
Cross section No	Width×Heigh t (m×m)	Hydraulic diameter D _m	Airduct	Average pressure loss $p_m(Pa/m)$	Pressure loss P _m (Pa)
Cross section No 1	Width×Heigh t (m×m) 0.2x0.2	Hydraulic diameter D _m 0.1953	Airduct 1-2	Average pressure loss pm(Pa/m) 2.384	Pressure loss P _m (Pa) 0.7152
Cross section No 1 2	Width×Heigh t (m×m) 0.2x0.2 0.1912x0.2	Hydraulic diameter D_m 0.1953 0.1743	Airduct 1-2 2-3	Average pressure loss pm(Pa/m) 2.384 2.6456	Pressure loss P _m (Pa) 0.7152 0.7937
Cross section No 1 2 3	Width×Heigh t (m×m) 0.2x0.2 0.1912x0.2 0.1302x0.2	Hydraulic diameter D_m 0.1953 0.1743 0.1435	Airduct 1-2 2-3 3-4	Average pressure loss pm(Pa/m) 2.384 2.6456 3.218	Pressure loss Pm(Pa) 0.7152 0.7937 0.9654

Power module temperature distribution

