

A Converter-Based Hardware Testbed Hybrid **Microgrid Emulator of a Flexible Manufacturing Plant**

Mohamed Al Sager, Dingrui Li, Leon M. Tolbert, Fred Wang, Hua Bai The University of Tennessee, Knoxville

INTRODUCTION

- Increasing interest in DC microgrids has grown, due to the high demand for electronics and other high-tech loads that requires DC power.
- Most of the existing infrastructure, including power generation and distribution, is based on AC.
- 24% of the total energy was consumed by the manufacturing sector in the U.S in 2018.
- A hybrid microgrid combining DC and AC sub-grids for an example flexible manufacturing plant (FMP) is examined using a hardware testbed (HTB).
- The deployed converter HTB will model the FMP system.

OBJECTIVES

- Accurately depict the system behavior to demonstrate different power flow • scenarios.
- Allow for real-time measurements and flexibility in testing. •
- Test control strategies and algorithms to address challenges before system • deployment.
- Provide grid support to help maintain efficiency and stability of the • distribution grid.

HARDWARE TESTBED SETUP

- Six two-level, three phase converters are used to emulate the FMP system.
- A DC power supply is used to form the DC link and supplies the power losses of the system.
- A CAN bus communication protocol is used between the central controller and the local controllers.

Fig. 2. Flexible manufacturing plant hybrid microgrid HTB architecture Fig. 3. Physical HTB.

Experimental Results

Plant PCS Critical load Noncritical

AC plant PV AC plant BESS

DC PCS AC load AC source Plant PCS

Fig. 4. AC bus in grid-connected mode

Fig. 5. FMP system in grid-connected mode

Conclusion

- An example FMP hybrid microgrid concept is introduced.
- A hardware testbed was designed and built.
- Experiments were performed to achieve grid-connected steady state operation.

Future Work

- Achieve steady-state operation in islanded mode.
- Provide grid support.
- Fault ride through capability.
- Facilitate planned and unplanned transitions.

