

Shielded Rogowski Coil with Enhanced DC **Measurement Capability for Double Pulse Test (DPT)** Application

Sadia Binte Sohid¹, Helen(Han) Cui¹, Wen Zhang¹, Fred Wang¹, Bernhard Holzinger² ¹ The University of Tennessee, Knoxville ² Keysight Technologies

MOTIVATION -

- The higher bandwidth of the shielded Rogowski coil is up to 250MHz. However, the lower bandwidth is limited to 30 kHz by the intrinsic noise of the op-amp in the integrator's circuit.
- A DC magnetic sensor has been combined with the combinational Rogowski coil realizing the HOKA principle to improve the lower measurement bandwidth without intruding the parasitic inductance in a DPT circuit.

Combinational Rogowski Coil (RC)

LOCATION SELECTION FOR DC SENSING -

The Fast Fourier Transform of the I_{Decap} , I_{Low} and I_{SW} verifies that the $I_{SW} = I_{Low}$ at the low frequency regime.

- Therefore, the DC magnetic field sensor can be placed between the DC link capacitor and the decoupling capacitors in a DPT circuit.
- This concludes that the inclusion of the DC sensor will not influence the power loop inductance.

PROTOTYPE DESIGN

DOUBLE PULSE TEST RESULTS

Probe Prototype

CONCLUSION

- The low-frequency measurement capability of the RC circuit was compromised by the intrinsic noise of the integrator op-amp.
- The inclusion of the Hall sensor improves DC measurement without intruding into the power loop inductance of the DP circuit.

