Participation Factor-Based Adaptive Model Reduction for Fast Power System Simulation

Mahsa Sajjadi, Kaiyang Huang, Kai Sun Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville, TN, USA

This paper presents an approach to analyze and rank participation factors of each system state variable into dominant system modes excited by a disturbance so as to determine which regions or generators can be reduced without impacting the accuracy of simulation for a study area.

State space representation

$\left\{\begin{array}{l}\Delta \dot{x}=A \Delta x+B \Delta u \\ \Delta y=C \Delta x+D \Delta u\end{array}\right.$

Reduced model

$$
\left[\begin{array}{l}
\dot{\tilde{x}}=\mathbf{T}\binom{\tilde{f}(\tilde{\mathbf{T}} \tilde{x}, u)}{\tilde{\mathbf{A}} \Delta \tilde{x}+\tilde{\mathbf{B}} \Delta u+\hat{x}_{0}} \\
y=\tilde{\mathbf{T}} \tilde{x}
\end{array}\right.
$$

Modal Analysis

$\left[\boldsymbol{\Psi}_{i} \mathbf{A}=\lambda_{i} \boldsymbol{\Psi}_{i}\right.$
$\mathbf{A} \boldsymbol{\Phi}_{i}=\lambda_{i} \boldsymbol{\Phi}_{i}$

The Northeastern Power Coordinating Council (NPCC) system

Simulation Results

The rotor angle mismatch error for the reduced-order model obtained by the fully linearized approach and rotor angle deviation-based approach is relatively large, while the participation factor-based method is capable of closely following the rotor angle of the original full-order model.

Dominated Mode	Participation factor of selected Generators		
	Generator 27		Generator 48
Mode 1	0.9978		0.0009
Mode 2	0.5003		0.9996
States	Error of each approach		
	Fully linear	Rotor-angle	Participation factor
δ, degrees	2.59×10^{1}	17.13×10^{0}	5.77×10^{0}
P_{m}, p.u.	1.70×10^{-3}	1.70×10^{-3}	7.00×10^{-4}
$P_{g v}$, p.u.	1.98×10^{-2}	1.30×10^{-2}	4.50×10^{-3}
V_{R}, p.u.	1.71×10^{-1}	1.14×10^{-1}	4.02×10^{-2}
$R_{f,}$, p.u.	1.34×10^{-2}	8.40×10^{-3}	3.10×10^{-3}
$E_{f d}$, p.u.	1.01×10^{-1}	6.50×10^{-2}	2.34×10^{-2}
E_{d}^{\prime}, p.u.	7.09×10^{-2}	4.64×10^{-2}	1.61×10^{-2}
E_{q}^{\prime}, p.u.	1.13×10^{-2}	7.20×10^{-3}	2.60×10^{-3}
ω, p.u.	4.20×10^{-3}	2.80×10^{-3}	9.00×10^{-4}

