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Abstract—The increasing penetration of inverter-based re-
sources (IBRs) calls for an advanced active and reactive power
(PQ) control strategy in microgrids. To enhance the controllabil-
ity and flexibility of the IBRs, this paper proposed an adaptive PQ
control method with a guaranteed response trajectory, combining
model-based analysis, physics-informed reinforcement learning,
and power hardware-in-the-loop (HIL) experiment. First, model-
based analysis proves that there exists an adaptive proportional-
integral (PI) controller with time-varying gains that can ensure
any exponential PQ output trajectory of IBRs. The gains consist
of a constant factor and an exponentially decaying factor, which
are then obtained using a model-free deep reinforcement learning
(RL) approach known as the twin delayed deeper deterministic
policy gradient. With the model-based derivation, the learning
space of the RL agent is narrowed down from a function space to
a real space, which reduces the training complexity significantly.
Finally, the proposed method is verified through numerical
simulation in MATLAB-Simulink and power HIL experiments in
the CURENT center. With the physics-informed learning method,
exponential response time constants can be freely assigned to
IBRs, and they can follow any predefined trajectory without
complicated gain tuning.

Index Terms—microgrid PQ control, inverter-based resources,
physics-informed reinforcement learning, trajectory tracking,
power hardware-in-the-loop experiment

I. INTRODUCTION

A microgrid is defined as an integrated energy system
consisting of interconnected loads and distributed energy

sources with a clear boundary [1], which can operate in both
grid-connected and islanded modes. Due to their capability to
accommodate a variety of clean energy sources, microgrids
play a significant role in environmental and energy strategies
[2], including enhancing power system resiliency to withstand
extreme weather [3], achieving zero carbon emissions [4], and
improving national energy security [5].

One main difference between a microgrid and a conven-
tional bulk power system is that a microgrid is composed of
many inverter-based resources (IBRs) [6], which reshape the
DC power generated by distributed energy resources (DERs),
such as photovoltaic (PV) panels, wind turbines, battery energy
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storage systems (BESS), and so on [7]. The high penetration
of IBRs makes microgrid control complicated. A typical
hierarchical control structure for microgrids has three levels
[8]: primary control, secondary control, and tertiary control.
Each control level has specific tasks, and they coordinate to
maintain microgrid stability and achieve economic benefits
by controlling the output of each synchronous generator and
IBRs [9]. Whether a microgrid operates in grid-connected
or islanded mode, active and reactive power (PQ) control is
a basic control mode for IBRs [10]. The controllers at the
secondary and tertiary levels generate PQ reference values
and supplementary signals for the primary controllers [11].
In PQ control, the inverter is controlled as a current source
[12] and the three-phase rotating voltage and current are
converted to direct and quadrature DC variables through Park
transformation. Then, these DC quantities can be regulated by
proportional-integral (PI) controllers in the outer PQ regulation
loop and the inner current regulation loop [13]. This double
loop structure with PI controllers has been used extensively in
industry and academia [14].

To enhance the flexibility and controllability of inverters
so as to provide better ancillary services to microgrids, the
existing literature developed several gain tuning methods for
microgrid PQ controller, including the trial-and-error method,
model-based method, heuristic method, and artificial intelli-
gence (AI) based method [15]. The straightforward trial-and-
error approach has typically been used in the field of industry.
However, such case-by-case tuning was a time-consuming
job for utility engineers. Hence, [16] implemented differential
evolution metaheuristic algorithms to update PQ controller
gains automatically. Ref. [17] obtained the optimal fixed gains
based on the controller bandwidth and the phase margin of
the single-phase inverter-based system. Although [16] - [17]
found a proper fixed gain, the PQ output of inverter cannot be
customized after different disturbances.

To make the inverter power more controllable, some adap-
tive strategies have been proposed to update PQ controller
gains in real-time. Ref. [18] proposed a robust load fre-
quency control strategy using a fuzzy logic based adaptive
PI controller. In [19], a fuzzy-adaptive strategy was adopted
to compensate for the dead time in the three-phase grid-
connected inverter. Although the fuzzy logic controller has
good performance in real-time gain scheduling, its member-
ship function still needs elaborate case by case design based on
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a system model. Then, [20] developed a novel control strategy
for grid-connected PV systems based on adaptive controllers.
The controller gains are continuously updated based on the
gradient of tracking error. Ref. [21] designed an adaption
law for inverter control based on the Lyapunov function. In
[22], an adaptive controller was designed for a three-phase
constant voltage constant frequency inverter with an output
filter, using adaptive gain scheduling control and feedback
control. References [23] - [24] discretized the control time
window and scheduled gains according to real-time error.
The above adaptive control theory-based methods have two
disadvantages: 1) the shape of the inverter response cannot
be freely designed and accurately controlled, which degrades
the inverter’s flexibility and controllability; 2) some adaptive
parameters still require case by case detailed design, which
is not only time-consuming but is vulnerable to parameter or
model uncertainties.

Existing adaptive microgrid PQ controllers are not truly
controllable because the PQ output of the inverter cannot
accurately track the predefined trajectories, and thus cannot
respond to the customized grid-side demand. Therefore, this
paper proposes an adaptive microgrid PQ controller with
guaranteed trajectory. To design such a PQ controller, the first
question to answer is ‘whether there exists a PQ controller
or not that can guarantee a predefined exponential response
trajectory?’. If it exists, then how can we find the controller
gains without performing time-consuming gain tuning, and
the controller itself can accommodate parameter or model
uncertainties? For this, we developed an adaptive PQ controller
with time-varying-gains to guarantee the output trajectory, us-
ing a hybrid model-based and physics-informed reinforcement
learning approach.

First, we perform model-based analysis to prove the exis-
tence of an adaptive PI controller with time-varying-gains to
guarantee the predefined trajectory. The time-varying-gain is
a function of time with a constant factor and an exponen-
tially decaying factor. Then, a model-free deep reinforcement
learning (RL) algorithm known as the twin delayed deeper
deterministic (TD3) policy gradient [25] is implemented to
determine the time-varying PI gains. With the guidelines
provided by the model-based derivation, the RL agent just
needs to find the real constant coefficients instead of the time-
domain gain function. Hence, the learning space is narrowed
down from a function space to a real space, which reduces
the training complexity significantly. In addition, the repeated
interaction between the deep RL agent and the environment
also solves the problems of parameter/model inaccuracy or
unavailability. In addition to the numerical simulation, we fur-
ther verified the proposed controller through power hardware-
in-the-loop experiments. A hardware test-bed (HTB) platform
has been developed by the Center for Ultrawide Area Resilient
Electric Transmission Networks (CURENT) at the University
of Tennessee to emulate power systems by programming IBRs
to behave like power system components [26] - [27]. This
hybrid method may be applied to other systems that employ
PI controllers and wish to have desired system response. Then,
the contributions of this manuscript are as follows:

• A mathematically rigorous proof of the existence of

an adaptive PI controller that can guarantee a predefined
exponential response trajectory in a general feedback system.

• Derivation of the formulas for microgrid PQ control to
enable trajectory tracking capability and validation through
both numerical simulation and power HIL experiments.

• Combination of the model-based analysis and the physics-
informed reinforcement learning approach to speed up the
learning and solve the problem of model or parameter un-
availability and uncertainty.

The remaining sections of this paper are arranged as fol-
lows: Section II derives the formula of an adaptive PI con-
troller that can guarantee an exponential response in a generic
system and then implements it in an microgrid PQ control.
In Section III, a physics-informed deep RL implementation is
proposed to learn the coefficients of the PI gains formula, since
microgrid models may not be readily available or accurate.
Section IV verifies the proposed hybrid control algorithm in
a modified Banshee microgrid through numerical simulation
and power HIL experiments. Finally, Section V gives our
conclusions.

II. MODEL-BASED THEORY AND ANALYSIS

This section first derives the adaptive PI controller with
time-varying gains that can guarantee an exponential response
trajectory with a specific time constant in a general feedback
system, and then applies it in microgrid PQ control.
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Fig. 1. (a) Diagram of fixed gain PI controller; (b) Diagram of
adaptive PI controller with time-varying gains; (c) PI controller
in a feedback system.

A. Adaptive PI controller

1) Transfer function: The conventional PI controller uses
fixed gains, and its transfer function is obtained in (1).

GFixed (s) =
Y (s)

E(s)
= kp +

ki
s

(1)

As shown in Fig. 1(a)-(b), the diagram of the PI controller
changes if time-varying gains are used. Because the multi-
plication operation in the time domain corresponds to the
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convolution operation in the frequency domain, the transfer
function of the time-varying PI controller is derived as follows.

Y (s) = Kp(s) ∗ E(s) +
Ki(s) ∗ E(s)

s
(2)

GVarying (s) =
1

E(s)

[
Kp(s) ∗ E(s) +

Ki(s) ∗ E(s)

s

]
(3)

where ‘*’ is the convolution operator.
In fact, if Kp(s) and Ki(s) in (3) are constant, (3) is iden-

tical to (1), which means the time-varying gain PI controller
is simplified to the conventional fixed gain PI controller.

2) Adaptive PI controller in a feedback system : When a
general PI controller is implemented in a feedback system,
such as the one shown in Fig. 1(c), its transfer function is
represented by the input error E(s), system transfer function
Gsys(s), and system output Y (s).

GPI(s) =
Y (s)

E(s)
Gsys(s) (4)

Combining (3) and (4), one obtains (5). Then, it is possible
to derive kp(t) and ki(t) in the time domain when Gsys(s)
and Y (s) are known or predefined.

Kp(s) ∗ E(s) +Ki(s) ∗
E(s)

s
=

Y (s)

Gsys(s)
(5)

B. Analytical formulation of adaptive gains

1) Design of ideal smooth trajectory: Assume the con-
troller input Uref is a step signal and the error e is a decaying
exponential signal with a time constant τ in the control
diagram shown in Fig. 1(b), then the output y is an ideal
smooth trajectory. Their expressions in the time domain and
frequency domain are shown in (6) and (7), respectively.

uref = 1, e(t) = e−t/τ , y(t) = 1− e−t/τ (6)

Uref =
1

s
, E(s) =

1

s+ 1/τ
, Y (s) =

1

s
− 1

s+ 1/τ
(7)

2) Derivation of adaptive gains: Assume Gsys(s) =
n(s)/m(s) and plug (6)-(7) in (5). Then,

Kp(s)∗
1

s+ 1/τ
+Ki(s)∗

1

s(s+ 1/τ)
=

1

τs(s+ 1/τ)
·m(s)

n(s)
(8)

Next, perform an inverse Laplace transformation for both
the left and right sides of (8). The left side is

L−1[ left side ] = τki(t) + [kp(t)− τki(t)] e
−t/τ (9)

The system transfer function Gsys(s) is found on the right
side and determines whether or not the ‘left side = right side’
has a time domain solution. Let D represent the degree of a
polynomial. Gsys(s) can be categorized into three types based
on the numerator and denominator degrees, which results in
three different solutions.

Condition 1: D[n(s)] = 0 and D[m(s)] ≤ 2. The system
transfer function does not have zero points and thus will not
bring a new pole to the right side. Then,

L−1[ right side ] = L−1

[
1

τs(s+ 1/τ)
· m(s)

n(s)

]
= L−1

[
l1

s+ 1/τ
+

l2
s

]
= l1 · e−t/τ + l2

= L−1[ left side ]

(10)

kp(t) = l1 + l2, ki(t) = l2/τ (11)

where l1 and l2 are constants. In Condition 1, the adaptive PI
controller changes to a conventional PI controller with fixed
gains.

Condition 2: D[n(s)] ̸= 0 and D[m(s)]−D[n(s)] ≤ 2.

L−1[ right side ] = L−1

[
1

τs(s+ 1/τ)
· m(s)

n(s)

]
= L−1

[
l1

s+ 1/τ
+

l2(s)

s · n(s)

]
= l1 · e−t/τ + L−1

[
l2(s)

s · n(s)

]
= L−1[ left side ]

(12)

 kp(t) = l1 + L−1
[

l2(s)
s·n(s)

]
ki(t) = L−1

[
l2(s)
s·n(s)

]
/τ

(13)

where l1 is constant and l2(s) is an s function obtained through
fractional decomposition. In condition 2, kp(t) and ki(t) are
time-varying gains.

Condition 3: D[m(s)] − D[n(s)] ≥ 3. The right side is
irreversible because the numerator has a higher degree than
the denominator. In condition 3, there is no solution for kp(t)
and ki(t) in the time domain.

C. Microgrid PQ control with guaranteed trajectory

Fig. 2(a) shows the complete diagram of this inverter-based
PQ control. The decoupled control diagram is displayed in Fig.
2(b) using the feedforward decoupling method [11]. Here, the
adaptive PI controller is only implemented in the PQ regulator
because the bandwidth of the inner current regulator is larger
than that of the power regulator, and the output of the power
regulator determines the shape of the final PQ response.

Based on Fig. 2, Gsys(s) is written in (14).

Gsys(s) =
Kpwm (kp2s+ ki2)

wLfs2 (1 + 1.5Tss) +Kpwm (kp2s+ ki2)
(14)

where kp2 and ki2 are fixed gains of the current regulator in
Fig. 2(a). Assume Gsys(s) = n(s)/m(s), then D[n(s)] = 1,
D[m(s)] = 3, and D[m(s)] − D[n(s)] = 2, satisfying
Condition 2. Through fractional decomposition, the kp(t) and
ki(t) of the power regulator are shown in (15).
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Fig. 2. (a) Control diagram of inverter-based PQ control ; (b)
Decoupled PQ control block-diagram.

{
kp(t) = kp0 + kp1e

−t/τ ′

ki(t) = ki0 + ki1e
−t/τ ′ (15)

where 
kp0 =

Lf (1−1.5Ts/τ)
τKpwm(ki2/kp2−1/τ)

kp1 =
Lf

τKpwm

(
1.5Ts +

1.5Ts/τ−1
ki2/kp2−1/τ

)
ki0 = 0, ki1 = kp1/τ
τ ′ = kp2/ki2

(16)

The adaptive gains that can guarantee a predefined PQ
trajectory consist of a constant factor and an exponentially
decaying factor. The four constant coefficients kp0, kp1, ki0,
and ki0 as well as the decaying time constant τ ′ are determined
by PWM gain Kpwm, sampling delay Ts, filter reactance Lf ,
trajectory time constant τ , and fixed current regulator PI gains
kp2 and ki2.

D. Importance and challenges of analytical formulation

The analytical formulation in the previous subsections il-
lustrates that there exists an adaptive controller that can
perfectly track a predefined trajectory following an exponential
decay. The derivations, on the other hand, give a theoretical
foundation for controller design, while the previous works [28]
only determined how to track a given trajectory. Although this
model-based mathematical proof is rigorous, it may not be
suitable for direct implementation in a real-world system for
the following reasons:

• It is difficult to model each component of the inverter in
detail.

• The microgrid parameters are not always accessible; even
if accessible, they are not necessarily accurate.

• Model-based suggestions also require further manual ad-
justments in the real application. The more simplified model
needs more tuning effort.

With these challenges as our motivations, a data-driven
approach is proposed to implement the adaptive PQ control
in the next section.

III. PHYSICS-INFORMED LEARNING AND POWER HIL
DEMONSTRATION

This section implements the adaptive PQ controller in
a data-driven way and demonstrates it through power HIL
experiments.

A. Motivation for deep reinforcement learning

To address the application challenges discussed in the above
subsection II-D, a deep RL approach is implemented with the
following considerations.

• RL is goal-oriented and can output sequences of actions.
Also, it does not require a large number of labeled datasets
like supervised learning.

• RL is adaptable because the uncertainties of the model
and parameters are offset by the interactive training between
agent and environment.

• Since RL is an intelligent algorithm, it releases microgrid
operators from time-consuming manual tuning.

Although the RL agent can directly replace the PI controller
and output control signals, its training complexity will increase
exponentialy as the decreztized control interval decreases. To
address this issue, we further narrow down the learning space
based on the physical knowledge derived in Section II.

B. Physics-informed reinforcement learning

1) Introduction to TD3: In this study, we chose a state-
of-the-art deep deterministic RL method, the TD3 policy
gradient. The TD3 policy gradient is an upgraded version of
the deep deterministic policy gradient (DDPG) [29] that can
handle continuous variables. Three techniques are developed to
prevent the overestimation of the Q-value in DDPG as follows
[30].

• Twin critic networks: two critic networks estimate the
state-action value at the same time, and the smaller one is
chosen as the estimated Q value.

• Delayed update of target and policy: the update frequency
of the critic network is higher than that of the actor network.

• Target policy smoothing: random noise is added to a′ when
the critic network estimates Q(s′, a′).

2) Physics-informed TD3 implementation: Fig. 3 shows
the overall structure of the physics-informed TD3 algorithm,
which has three main steps.

(i). Design of state, action, and actor/critic network: The
derivation in Section II provides the physical guideline for
RL agent learning. Three variables are chosen as the states,
including trajectory time constant τ , PQ reference step change
∆Pref/∆Qref , and sampling interval Ts. The model-based
derivation in (15)-(16) converts the learning space from func-
tion space to real space, resulting in four coefficients and the
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Fig. 3. Diagram of physics-guided learning in numerical simulator and power HIL demonstration in HTB.

TABLE I. Key parameters of TD3 Training

Item Parameters with model- based derivation Parameters without model-based derivation

Punishment factor γ(t) = 20t+ 1 γ(t) = 20t+ 1

Actor network structure [3]× [256]× [256]× [5] [3]× [256]× [256]× [2]

Critic network structure
[

3
5

]
×

[
32
32

]
× [256]× [256]× [1]

[
3
5

]
×

[
32
32

]
× [256]× [256]× [1]

Actor network update frequency 20 20
Actor network learning rate 0.0005 0.0005
Critic network learning rate 0.001 0.001
Optimizer Adam Adam
Simulation step size in Simulink 5× 10−5 5× 10−5

decaying time constant being actions rather than real time
control signals. In addition, actor and critic are fully connected
neural networks.

(ii) Design of reward function: The training reward is
designed as an integral part of the error between the real-time
PQ output and the designed trajectory. To better differentiate
the features of the real-time trajectory, e.g., initial oscillation,
overshooting, and steady-state errors, the reward function has
a punishment factor γ. The final reward function for active
power and reactive power regulation are shown in (17).

r =
1

2
(rP + rQ) (17)

where
rP = −

∫
γ(t) · [Ptrj(t)− P (t)] dt

rQ = −
∫

γ(t) · [Qtrj(t)−Q(t)] dt

(18)

(iii). Setup of the training environment An RL agent keeps
interacting with the environment to update its policy based on
environmental feedback. The environment can either be a real

environment or a numerical simulator. This paper performs
offline training in numerical simulators (Matlab-Simulink and
Python) and validates the training results through online power
HIL experiments. As shown in Fig. 3, Python receives the
buffer data generated by Simulink to update the actor and
critic networks. In reverse, Simulink receives the actions in
Python to regenerate the buffer data. This process repeats
until the rewards converge. Knowing the format of gains
in (15), the RL agent outputs four coefficients and a time
constant at the beginning of each episode. Without the model-
based conclusion, the deep RL agent must output real-time
gains following the simulation step size throughout the whole
episode in Simulink, which may result in millions of actions
in a single episode. Hence, the physics-informed learning
approach can greatly reduce the training complexity and save
training time.

C. Power HIL demonstration

Because the RL agent may output bad actions and damage
the hardware devices during the exploration, the offline learn-
ing results are demonstrated in the power HIL environment
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after the reward curve converges in numerical simulator. As
shown in Fig. 3, power HIL environment is implemented in
CURENT HTB, which uses identical commercial-grade power
electronics inverters to emulate real microgrids. Each inverter
in the HTB is programmed digitally with built-in digital signal
processors (DSPs) to behave as various devices, including
sources, loads, energy storage, and solar PV [26] - [27].

IV. CASE STUDY

A. Test system: modified Banshee microgrid

Fig. 4 shows the single-line diagram of the test microgrid
to demonstrate the proposed adaptive PQ controller. The test
microgrid is modified from the Banshee distribution system
[31] by keeping feeder 1 and adding renewable energy and
energy storage devices. A 500-kW BESS on Bus 102 and a
2,500-kW PV device on Bus 105 diversify the power sources.
The BESS supplements the diesel generator for power output.
When combined with the BESS and diesel generator, the PV
device can achieve all-day self-sustaining operation in grid-
forming modes.
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Fig. 4. Single-line diagram of modified Banshee microgrid
[31].

B. Training in numerical simulators

The proposed adaptive PI controller is implemented in the
BESS connected to Bus 102. Through normalization, the active
(P) and reactive (Q) loops can share one PI controller in the
training process. After training, two PI controllers are then
applied in the P and Q loops separately to enable asynchronous
control of active and reactive power.

To show the advantages of the physics-informed learning
approach, the RL agent is trained with and without model
derivations. The key training parameters are listed in Table I.
All simulations have been performed in MATLAB® version
R2020a, Python version 3.7, and Tensor flow version 2.1 with
a PC Intel® Core i7-8665U CPU at 2.10 GHz and 16 GB
RAM.

Fig. 5 shows the TD3 training results. The training time with
and without physics guideline for a single episode is around
5.45s and 10.67s, respectively. In Fig. 5, the average reward
curve based on model analysis converges after training for
6,000 episodes, while the reward curve without model analysis
cannot converge. The physics guidelines provided by model-
based derivation greatly reduce the training complexity and,
therefore, facilitate convergence and reduces training time.

Fig. 5. Reward curve with and without physics guideline.

C. Validation in numerical simulators

This subsection aims to verify the model-based derivation
and physics-informed TD3 training results in a numerical
simulator. Because the modified Banshee microgrid is a typical
weak grid [31] and more vulnerable to disturbances in islanded
mode (switch 100 is off in Fig. 4), this subsection mainly
shows the islanded test results.

1) Scenario 1: Scheduling reference change: In Scenario 1,
the reference values of the P loop and Q loop are scheduled
to change, which includes two sub-conditions as follows. In
each sub-condition, the trajectories are assigned different time
constants.

(i). Scheduling single-loop, single-step change: Pref

changes from 0 to 100 kW at 1 s. Fig. 6 depicts the ac-
tive power of IBRs under scheduling single-loop single-step
changes, where the gray dashed lines represent the predefined
trajectories. In Fig. 6(a), The active power response almost
coincides with the trajectories when the PI controllers are
adaptively tuned by the RL agent. This verifies the effec-
tiveness of the model-based derivation in Section II and the
training results in Subsection IV-B.

Moreover, the proposed adaptive PI controller is compared
with the conventional fixed gain controller and the self-tuning
method in [21]. In Fig. 6(a), the adaptive coefficients [kp0, kp1,
ki0, ki1] set by the RL agent are [0.8, -0.5, 10.7, -5] when the
trajectory time constant is 0.1. If the decaying coefficients kp1
and ki1 are removed, the time-varying gain controller changes
to a conventional fixed gain controller with kp = 0.8 and
ki = 10.7. As can be seen in Fig. 6(a), the adaptive gain curve
(blue) has no minor oscillation at the beginning of the step
change, and it follows the trajectory better than the fixed-gain
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curve (red). In Fig. 6(b), although kp and ki are continuously
updated online based on the pre-configured adaption law in
[21], the active power response can hardly track the predefined
trajectories.

(ii) Scheduling double-loop cascaded-step change: Pref and
Qref continuously change at 0 s, 2 s, and 4 s. To verify the ro-
bustness of the offline training, P-loop and Q-loop trajectories
are assigned a time constant of 0.1 and 0.2, respectively. Fig.
7 shows the PQ response under the scheduling of a double-
loop cascaded-step change. The actual PQ response follows
the predefined trajectories exactly, which means that the active
power and reactive power can be controlled separately and
simultaneously.

(a)

(b)

Fig. 6. Microgrid response under scheduling single-loop
single-step change reference change: (a) proposed adaptive
controller; (b) adaptive controller in [21].

Fig. 7. Microgrid PQ response under scheduling double-loop
cascaded-step change using proposed adaptive PI controller.

2) Scenario 2: Generation loss: The uncertainty of renew-
able energy resources may result in the loss of generation
from time to time. In Scenario 2, it is assumed that the PV
panel loses 100 kW of generation at 1 s. The Pref of the
BESS increases from 0 to 100 kW to compensate for the

generation loss. Similar to Scenario 1, three different time
constants are assigned to the active power trajectory. The active
power response in Fig. 8(a) shows that BESS output can follow
the predefined trajectories well when employing the proposed
adaptive controllers. In addition, Fig. 8(b) shows the IBRs
response using the adaptive method in [21], where the active
power cannot track the dashed trajectories accurately.

(a)

(b)

Fig. 8. Microgrid response under generation loss: (a) proposed
adaptive controller; (b) adaptive controller in [21].

In general, the proposed PQ controller can accurately follow
any predefined trajectory after a disturbance. The numerical
simulation demonstrates that the model-based derivation is
valid, the TD3 agent is well-trained, and the exponential
decaying time constant can be freely assigned to the PQ
response trajectory.

D. Validation in CURENT HTB

To further validate the proposed adaptive PQ controller, a
power HIL experiment is performed in CURENT HTB [27].

1) Configuration of HTB: Fig. 9 shows how HTB is
controlled, where Fig. 9(a) is the diagram of communication
structure and Fig. 9(b) is the control panel when testing the
adaptive PI controller. For further introduction of setting up
the modified Banshee microgrid in HTB, see the short video
on Youtube [32].

2) Controller validation: Scheduling power reference
change and generation loss are validated through the HTB.
To test the generalization of the proposed method, a new time
constant of τ = 0.4 is assigned to the trained RL agent to
output the adaptive gains for IBRs in addition to the time
constants of τ = 0.1 and τ = 0.2 used in numerical validation.
Further, the initial Pref is modified from 0 to 50 kW. The
response of IBR employing the adaptive PQ controller with
guaranteed trajectory is shown in Fig. 10. As shown in Fig.

https://www.youtube.com/watch?v=jH6mqsDo0hs&ab_channel=CURENTerc
https://www.youtube.com/watch?v=jH6mqsDo0hs&ab_channel=CURENTerc
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10(a) and 10(b), the actual PQ response follows the predefined
trajectories exactly, demonstrating the model-based analysis
and the physics-informed learning in Sections II and III. Fig.
10 shows that the smaller time constants correspond to faster
power response of IBRs and faster frequency response of
microgrids, which could be customized in real applications.

(a)

(b)

Fig. 9. Diagram of HTB: (a) communication structure (b)
control panel.

V. CONCLUSIONS

This paper proposes an adaptive microgrid PQ control
method with guaranteed trajectory, combining model-based
analytical proof, physics-informed learning, and power HIL
experiments. The model-based analysis shows the existence
of an adaptive controller that can perfectly track a prede-
fined trajectory with an exponential decay. This provides
critical guidance to the RL implementation that is highly
necessary, since direct controller substitution may bring about
exponentially increased training complexity. In addition, this
paper tests RL training results through power HIL hardware
experiments, which is beneficial for the implementation of
the advanced model free technique in real microgrids. The
conclusions are summarized as follows.

1) The system transfer functions are categorized into three
conditions, determining whether there exists a time-varying-
gain adaptive PI controller that can guarantee an exponentially

(a)

(b)

Fig. 10. Power HIL test results: (a) reference change; (b)
generation loss.

traceable curve. In Condition 1, fixed gains work; in Condition
2, time-varying gains are required; in Condition 3, no adaptive
PI controller works.

2) The proposed controller outperforms the conventional
fixed gain and adaptive PI controllers. It can accurately track
the predefined trajectory with any assigned time constant.

3) The microgrid inverter-based PQ control system meets
Condition 2. After implementing the proposed adaptive PI
controller, the active and reactive power output of inverters
can track a predefined exponential trajectory. The trajectory
time constant that benefits microgrid frequency and voltage
could be customized in application.

4) The model-based analysis provides guidelines for the
deep RL training, which relieves the training pressure, and
saves training time. In turn, the implementation of physics-
informed deep RL solves the problem of unavailability and
uncertainty in the model-based method.

5) The proposed control method allows inverter active and
reactive outputs to follow a predefined exponential trajectory
without the need for manual gain-tuning. The interaction be-
tween the RL agent and the training environment compensates
for the uncertainties caused by model simplification, parameter
distortion, and state variation.
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In practice, higher-level controllers are generating PQ ref-
erences for inverter-level controllers. Coordination between
higher and lower level controllers becomes feasible and signif-
icant owing to the controllability of the PQ output trajectory.
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[4] B. Alghamdi and C. A. Cañizares, “Frequency regulation in isolated
microgrids through optimal droop gain and voltage control,” IEEE
Transactions on Smart Grid, vol. 12, no. 2, pp. 988–998, 2020.

[5] A. Navas-Fonseca, C. Burgos-Mellado, J. S. Gómez, F. Donoso,
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