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❑ Model-based analysis

❑ Power HIL Experiment ❑ Physics-informed Reinforcement learning

❑ Introduction
To enhance the controllability and flexibility of the IBRs, this poster presents an 

adaptive PQ control method with a guaranteed response trajectory, combining 

model-based analysis, physics-informed reinforcement learning, and power 

hardware-in-the-loop (HIL) experiment. With the model-based derivation, the learning 

space of the RL agent is narrowed down from a function space to a real space, 

which reduces the training complexity significantly
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Time-varying Gains: Constant Coefficients:

➢The time-varying gains that can guarantee an

exponential P/Q trajectory consist of a constant

factor and an exponentially decaying factor.

➢The four constant coefficients kp0, kp1, ki0 and ki0

as well as the decaying time constant are

determined by system parameters.
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❑ Offline training

Microgrid

control center

action  [kp0, kp1, ki0, ki1 ,  ' ]

[∆P/Qref ,  , Ts]

Power HIL Environment in CURENT HTB

❑ Online demonstration

Update network

adaptive gains

plus

Original control (Fixed gain)

➢ Devices in microgrid systems are

controlled separately based on

preconfigured controller gains.

MFAC (Adaptive gain-tuning)

➢ In the event of a disturbance, keep the

actual response following the desired

trajectory by adaptively adjusting the

control gains.

Fig. 1 Diagram of the of PQ control with guaranteed trajectory

Fig. 2 Diagram of the proposed control framework

where

❑ Case study

A power HIL experiment is involved in to further 

demonstrate the proposed control method after the 

reward curve converges in numerical simulator. The 

HIL environment will be emulated through CURENT 

HTB, which uses identical commercial-grade power 

electronics inverters to emulate real microgrids. 

Fig. 4 Reward curve with and without 

the model-based derivation
Fig. 5 Power HIL test results

❑ Conclusions

➢The time-varying gains that can

guarantee an exponential P/Q

trajectory of inverters consist of a

constant factor and an

exponentially decaying factor.

➢The physics-informed implementation

reduces the learning space of RL

agent from a function space to a real

space, thus reducing the training

complexity significantly.


