

**Microgrid PQ Control with Guaranteed Trajectory:** Model-Based Analysis, Physics-informed Learning and Hardware Experiment

Buxin She<sup>1</sup>, Fangxing Li<sup>1</sup>, Hantao Cui<sup>2</sup>, Hang Shuai<sup>1</sup>, Oroghene Oboreh-Snapps<sup>2</sup>, Rui Bo<sup>2</sup>, Nattapat Praisuwanna<sup>1</sup>, Jingxin Wang<sup>1</sup>, Leon M. Tolbert<sup>1</sup>

<sup>1</sup> The University of Tennessee, Knoxville <sup>2</sup> Oklahoma State University <sup>3</sup>Missouri University of Sci. & Tech

# □ Introduction

To enhance the controllability and flexibility of the IBRs, this poster presents an adaptive PQ control method with a guaranteed response trajectory, combining model-based analysis, physics-informed reinforcement learning, and power hardware-in-the-loop (HIL) experiment. With the model-based derivation, the learning space of the RL agent is narrowed down from a function space to a real space, which reduces the training complexity significantly

#### **Original control (Fixed gain)**

Devices in microgrid systems are VS controlled separately based on preconfigured controller gains.



In the event of a disturbance, keep the actual response following the desired trajectory by adaptively adjusting the control gains.

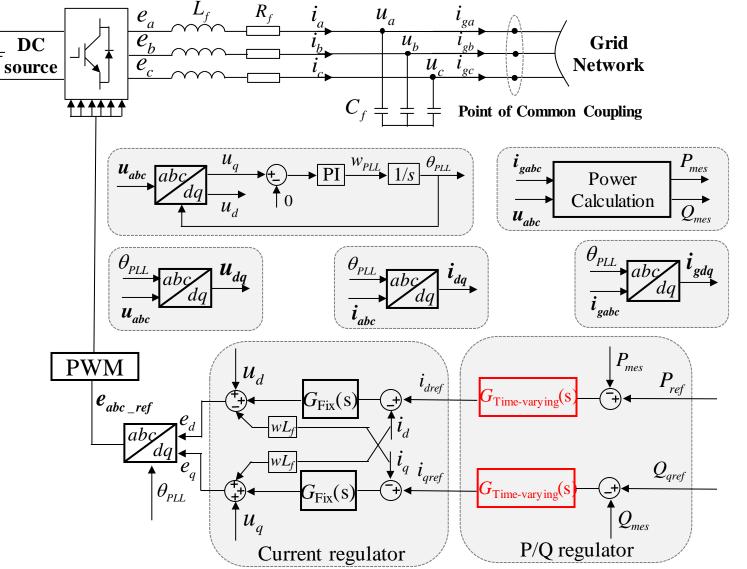


Fig. 1 Diagram of the of PQ control with guaranteed trajectory

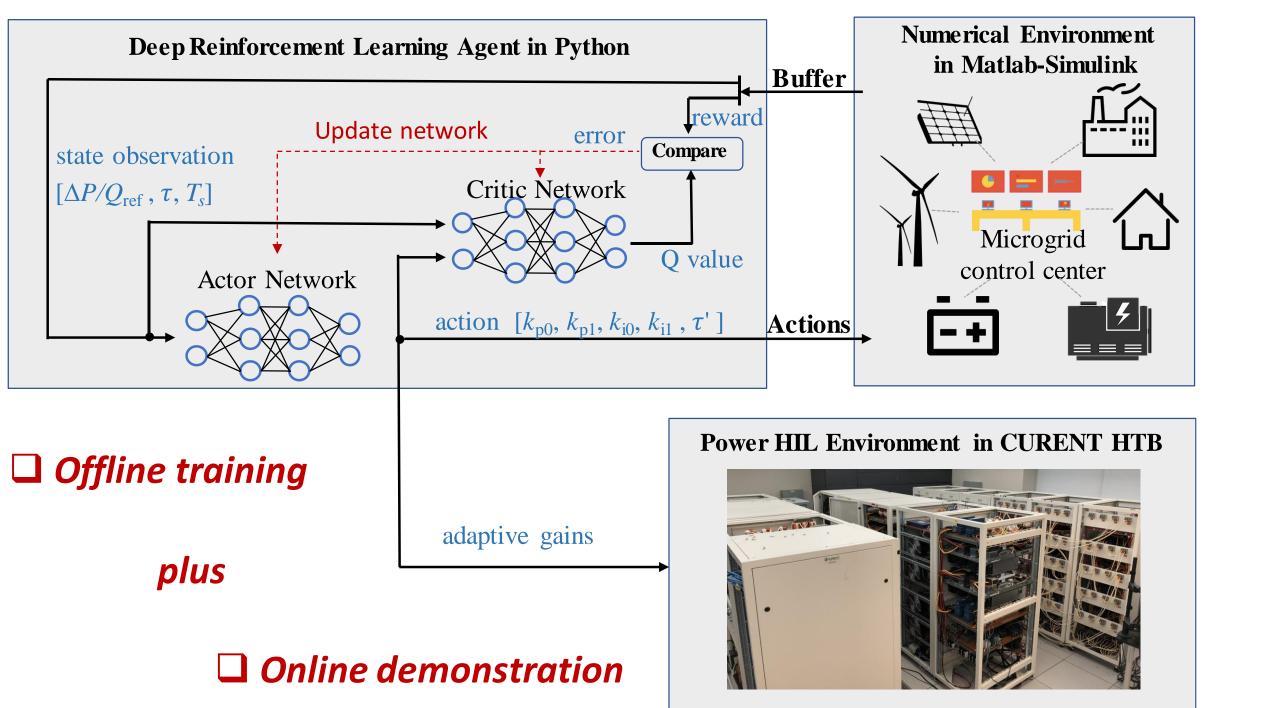


Fig. 2 Diagram of the proposed control framework

# **Physics-informed Reinforcement learning**

| _   |                                                                                                |     |   |
|-----|------------------------------------------------------------------------------------------------|-----|---|
|     | Algorithm 1: Physical informed TD3 training                                                    | 11: | J |
| _   | 1: Select $T, N, \boldsymbol{b}, \boldsymbol{\sigma}, \boldsymbol{\eta}, \boldsymbol{\alpha}$  | 10  |   |
|     | 2: Initialize $\theta_a$ and $\theta_c$ ; Initialize physics function f based on (15)          | 12: |   |
|     | 3: Initialize replay buffer <b>B</b>                                                           | 13: | j |
|     | 4: for $t \leftarrow$ to $T$ do                                                                | 14: |   |
|     | 5: $S \leftarrow S'$ [Update state]                                                            |     |   |
|     | 6: $a = \pi_{\theta}(S) + \mathcal{E}$ , where $\mathcal{E} \sim N(0, \sigma)$ [Select action] | 15: |   |
| 入   | 7: $k_{p}, k_{i} \leftarrow f(\mathbf{a})$ [Physics Transformation]                            | 16: |   |
| í Ľ |                                                                                                |     |   |

| 1: $y \leftarrow r + \alpha \min(\mathbf{Q}_{\theta c1})$ | $(S', \tilde{\mathbf{a}}), Q_{\theta c2}(S', \tilde{\mathbf{a}}))$ |
|-----------------------------------------------------------|--------------------------------------------------------------------|
|-----------------------------------------------------------|--------------------------------------------------------------------|

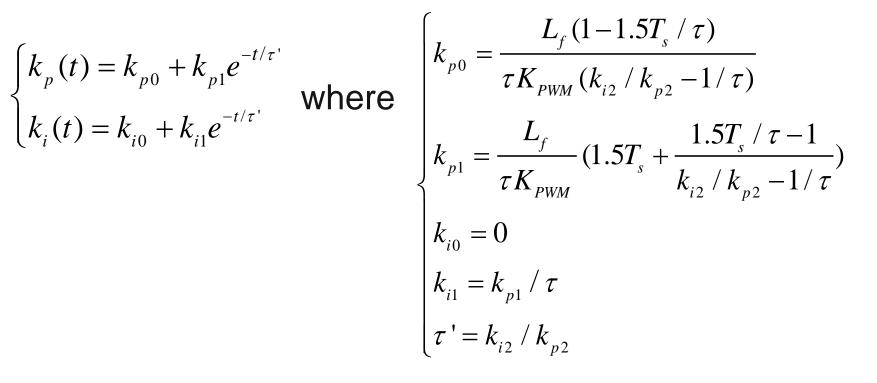
- $\theta_c \leftarrow \operatorname{argmin}_{\theta_c} \mathbf{E} \sum \left[ y Q_{\theta}(S, a) \right]^2$  [Update critics]
- if t mode d then
- $\nabla J(\theta) = E \nabla_a Q_{\pi\theta}(s, a) \Big|_{a=\pi_{\theta}(s)} \nabla_{\theta} \pi_{\theta}(s) \nabla f_a \text{ [deterministic policy gradient]}$
- $\theta_a \leftarrow \eta \theta_a + (1 \eta) \theta'_a$  [Soft update for target actor networks]
- $\theta_c \leftarrow \eta \theta_c + (1 \eta) \theta'_c$  [Soft update for target critic networks]

### Model-based analysis

- $\succ$  The time-varying gains that can guarantee an exponential P/Q trajectory consist of a constant factor and an exponentially decaying factor.
- > The four constant coefficients  $k_{p0}$ ,  $k_{p1}$ ,  $k_{i0}$  and  $k_{i0}$ as well as the decaying time constant are determined by system parameters.

### **Time-varying Gains:**

#### **Constant Coefficients:**



## **D** Power HIL Experiment

A power HIL experiment is involved in to further demonstrate the proposed control method after the reward curve converges in numerical simulator. The HIL environment will be emulated through CURENT **HTB**, which uses identical commercial-grade power

- $B \leftarrow \text{Append}(S, a, r, S')$  [Store transition tuple]
- $B_M \leftarrow B'_M$  [Sample mini-batch tuples]
- $a' = \pi_{\theta a}(S) + \mathcal{E}'$ , where  $\mathcal{E}' = \operatorname{clip}(\mathcal{E}, -b, b)$

17: end if 18: end for

19: Output well-trained parameterized policy  $\pi(\theta_a)$ 

electronics inverters to emulate real microgrids.

#### **Case study**

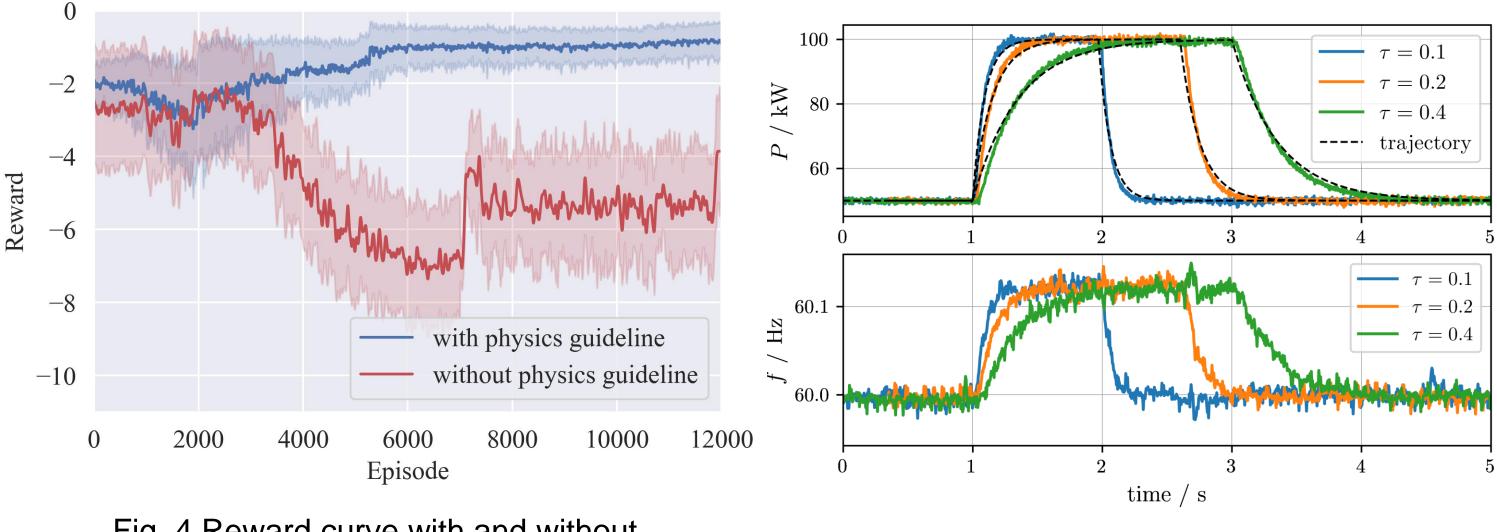


Fig. 4 Reward curve with and without the model-based derivation

Fig. 5 Power HIL test results

## Conclusions

- $\succ$  The time-varying gains that can an exponential P/Q guarantee trajectory of inverters consist of a constant factor and an exponentially decaying factor.
- > The physics-informed implementation reduces the learning space of RL agent from a **function space** to a **real** space, thus reducing the training complexity significantly.





