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Abstract—Challenges and opportunities coexist in microgrids
as a result of emerging large-scale distributed energy resources
(DERs) and advanced control techniques. In this paper, a compre-
hensive review of microgrid control is presented with its fusion of
model-free reinforcement learning (MFRL). A high-level research
map of microgrid control is developed from six distinct per-
spectives, followed by bottom-level modularized control blocks
illustrating the configurations of grid-following (GFL) and grid-
forming (GFM) inverters. Then, mainstream MFRL algorithms
are introduced with an explanation of how MFRL can be inte-
grated into the existing control framework. Next, the application
guideline of MFRL is summarized with a discussion of three
fusing approaches, i.e., model identification and parameter tun-
ing, supplementary signal generation, and controller substitution,
with the existing control framework. Finally, the fundamental
challenges associated with adopting MFRL in microgrid control
and corresponding insights for addressing these concerns are fully
discussed.

Index Terms—Microgrid control, data-driven control, model-
free reinforcement learning, grid-following and grid-forming
inverters, review and vision.

I. INTRODUCTION

M ICROGRIDS are gaining popularity due to their capa-
bility for accommodating distributed energy resources

(DERs) and form a self-sufficient system [1]. Microgrids not
only contribute to the development of a zero-carbon city
but also work as a fundamental component of the ‘source,
network, and load’ integrated energy systems. A microgrid
may incorporate various types of energy sources and act
as an energy router [2], making it possible for the grid to
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survive severe events while also making the country more
energy-resilient and secure [3].

A typical microgrid is composed of various DERs, energy
storage systems, and loads that are connected locally as a united
controlled entity [4]. In comparison to a traditional synchronous
generator-dominated bulk power system, microgrids have a
larger penetration of DERs [5], [6], a smaller system size [7], a
greater degree of uncertainty [8], lower system inertia [9], [10],
and a stronger coupling of voltage and frequency (V-f). All
these features pose challenges to the design of a microgrid con-
trol system. A complete microgrid control system is comprised
of software and hardware that can both perform microgrid
functionalities and guarantee stability at the same time [11].
The software is also referred to as microgrid controllers, and
focuses on control algorithm design in the paper. Existing
microgrid controllers are usually designed under a hierarchal
framework that includes the primary, secondary, and tertiary
controllers [12]. Ref. [13] conducted a thorough review of the
hierarchal control of microgrids. There are also some articles
providing an overview from the different perspectives of com-
munication interfaces [14], operation modes [15], and control
techniques [16]. All these reviews provided an excellent sum-
mary and future directions of microgrid control research. As a
result, we synthesize the valuable viewpoints and develops a
high-level research map of microgrid control based on exist-
ing work. Furthermore, modularized control blocks have been
developed to dive into the design of the fundamental units
of microgrids: grid-following (GFL) and grid-forming (GFM)
inverters [17], which is advantageous for microgrid researchers.

Model-free controllers have been used previously in
microgrid control because they are easy to set up and inde-
pendent of the physical model of the microgrid components.
For example, fuzzy logic controllers [18], [19] and adaptive
controllers [20], [21] can adjust their output based on pre-
defined membership functions and adaption laws, respectively.
However, they are difficult to scale up and cannot deal with
emerging uncertainties in microgrids. Neural network con-
trol [22], [23] is another type of well-known model-free method.
Although neural network is good at perception and decision-
making based on historical data, it lacks exploration capability
and cannot adapt to the rapidly changing microgrid environ-
ment. Apart from the above-mentioned model-free techniques,
reinforcement learning (RL) is a prominent approach that is
concerned with how an intelligent agent learns to solve Markov
Decision Processes (MDP) in an environment. If we do not
assume knowledge or an exact mathematical model of the
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environment, RL is referred to as model-free reinforcement
learning (MFRL). Then, the RL agent finds the optimal policy
through repeated interactions with the environment [24], [25].
MFRL is a promising data-driven and model-free approach
since it is not dependent on an accurate system model and
does not need as many labeled datasets as supervised learn-
ing. In addition, it has strong exploration capability and can
achieve autonomous operation once set up. MFRL is gaining
more and more attention due to its successful applications in
video games [26], autonomous driving [27], robotics [28], and
power systems [29]. Recently, researchers from DeepMind and
École Polytechnique Fédérale de Lausanne developed a non-
linear, high-dimensional, and RL-based magnetic controller
for nuclear fusion [30] and published their work in Nature.
This indicates the great potential of implementing MFRL in
engineering control (microgrid control).

For now, MFRL is still under development and needs further
study. While some research has been conducted on MFRL for
its application in microgrid control, there has been no in-depth
review of how MFRL can be integrated into the current microgrid
control framework. Hence, this paper performs a comprehensive
review of the control framework of microgrids and summarizes
how MFRL fuses with the existing control schemes.

Compared with other review papers on microgrid control,
the main merits of this manuscript include:

• Plotting of a high-level research map of microgrid control
from the perspective of operation mode, function grouping,
timescale, hierarchical structure, communication interface, and
control techniques.

• Development of modularized control blocks to dive into
the fundamental units of microgrids: GFL and GFM inverters.

• Introduction of the mainstream MFRL algorithms and
summary of MFRL application guidelines, and the answering
of two important questions: i).‘What kinds of tasks is MFRL
suitable for?’; ii).‘How can MFRL be fused with the existing
microgrid control framework?’.

• Discussion of the primary challenges associated with
adopting MFRL in microgrid control and providing insights
for addressing these concerns.

The rest of this paper is organized as follows. Section II
introduces the current microgrid control framework, includ-
ing a high-level research map and modularized control blocks.
Section III gives a brief introduction to RL and the mainstream
algorithms of MFRL. The characteristics of each algorithm and
its application scenarios in microgrid control are also summa-
rized. A full discussion of the fusion of microgrid control with
MFRL is presented in Section IV, along with the associated
challenges and insights. Section V concludes this paper.

II. MICROGRID CONTROL FRAMEWORK

This section first plots a high-level research map of
microgrid control, and then develops modularized control
blocks to dive into GFL and GFM inverters.

A. High-Level Research Map of Microgrid Control

Fig. 1 shows the high-level research map of microgrid con-
trol from the perspectives of 1) operation mode, 2) function

grouping, 3) timescale, 4) hierarchical structure, 5) communi-
cation interface, and 6) control techniques. For each perspec-
tive, there are articles providing comprehensive reviews. They
are denoted in Fig. 1 for the reader’s reference.

1) Operation Mode: A microgrid can operate in either grid-
connected (GC) mode or islanded (IS) mode depending on its
connectivity to the main grid [31], [32]. In GC mode, the
microgrid keeps tracking the phase of the main grid through
the phase-locking loop (PLL), and exchanges the mismatched
power at the point of common coupling (PCC). In IS mode,
the microgrid forms a self-sufficient system based on the
local generations. Ref. [33] summarized the strategies for the
seamless transition between GC and IS modes.

2) Function Grouping: To meet the objectives of the
microgrid operation, the 2nd viewpoint is associated with
function grouping, which specifically include the microgrid
controller and device controller [34]. Grid-level controllers
focus on supervisory control functions and grid interactive
control functions, and they are more likely to be software-
based and applied to the hardware; while device controllers
focus on device-level control functions and local-area control
functions, and they are more likely to be applied directly on
the hardware (devices and assets).

3) Timescale: The time scale of microgrid control is tightly
related with the control structure. So, it will be discussed in
detail in the next discussion about hierarchical structure.

4) Hierarchical Structure: The hierarchical control struc-
ture is another specific function grouping perspective that
clearly sets up the control targets for all the controllers, with
which each level controller can work independently within the
distinct timescales [11].

The primary controller is responsible for voltage and cur-
rent control of inverters and automatic power sharing among
generations while maintaining V-f stability on a timescale of
seconds [35]. The indirect current control is used in the early
stages [36], [37], and is later replaced by the direct current
control due to its fast response and accurate current con-
trol capability [38]. More details can be found in the review
paper [39]. Because the primary controller pertains to fast
control actions, it predominantly determines the stability of
microgrids [2]. Ref. [40] gave an overview of the primary con-
trol of microgrids. The secondary controller mitigates the V-f
deviation unsolved by the primary controller in the timescale
of seconds to minutes. It improves the power quality by gen-
erating supplementary signals based on the errors between the
measurements and reference values. Ref. [41], [42] performed
a review on the secondary control of ac microgrids. The
tertiary controller mainly focuses on economic and resilient
operations in the timescale of minutes to hours. It adjusts the
setting points of the primary and secondary controllers by solv-
ing optimal power flow and considering the load side demand
response. Some reviews can be found in [43], [44].

5) Communication Interface: Depending on the communi-
cation interface, the control structure of the microgrid can also
be categorized into centralized control, decentralized control,
and distributed control [45].

In centralized control, the microgrid control center coordi-
nates the load and generation and responds to all disturbances.
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Fig. 1. High-level research map of microgrid control.

It collects and processes all the local information before
sending the control signals to each device. The centralized
control has the advantage of accurate power-sharing and
good transient performance but suffers from the high cost
of the communication device and single point failure. In dis-
tributed control, each node communicates only with its adjunct
nodes. Average-based, consensus-based, and event-triggered
distributed algorithms are employed in microgrid control [46].
Distributed control algorithms require the connected com-
munication graph of microgrids. They also have a reduced
convergence speed as the network grows [47]. In decentral-
ized control, the control signals are generated based on local
measurements. It has the advantage of the plug-and-play capa-
bility and is free of communication channel time delay, but it
suffers from inaccurate power-sharing and large V-f deviation
after disturbances. Ref. [47] conducted a review from the per-
spective of communication interfaces and summarized some
tricks to address their flaws.

6) Control Techniques: Both model-based and data-driven
control techniques have been utilized in microgrid control.
Beginning with the classical linear control theory, advanced
model-based control approaches such as non-linear con-
trol, optimum control, and model-predictive control (MPC)
are then extensively used in microgrids. Ref. [48] summa-
rized the advances and opportunities of employing MPC in
microgrids, and [49] reviewed the robust control strategies
in microgrids. To address the problems of model uncertainty
and unavailability, a variety of data-driven methodologies

such as cutting-edge machine learning (ML) and deep learn-
ing (DL) are also employed in microgrid control. Ref. [50]
reviewed the application of big data in microgrids, and [51]
conducted a survey on DL for microgrid load and DER
foresting. A review of MFRL for microgrid control has yet
to be done, which is why it is the main scope of this
manuscript.

In summary, MFRL is a promising approach that is worth
investigating and being employed in microgirds. As shown in
the high-level research map, MFRL doesn’t mean to replace
the existing control framework, but to complement it, improve
it in a data-driven way, and finally work as an integrated part
of the microgrid controller.

B. Configuration of Grid-Following and Grid-Forming
Inverters

GFL and GFM inverters are no doubt one of the most impor-
tant units in microgrids [52]. This subsection develops the
modularized control blocks to present the bottom-level control
details of GFL and GFM inverters. Fig. 2 shows the diagram
of the modularized control blocks, with which a GFL or GFM
inverter can be configured easily by connecting the modules
in series. In addition, it is beneficial to the fusion summary
in Section IV because the diagram clearly shows the control
details that could couple with MFRL.

1) M1: Grid ∪ Inverter Module: The 1st module (M1) is
named the ‘Grid ∪ Inverter Module’ because it illustrates the
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Fig. 2. Modularized control blocks of GFL and GFM inverters.

connection of an inverter to the main grid. As shown in Fig. 2,
the dc source, dc-ac inverter, and RLC filter are linked in
series, which are then connected to the main grid through
the PCC. Here, an average model of an inverter that neglects
the switching of pulse-width modulation (PWM) is often
employed for the control system design. All the high-level
controllers work together to generate the reference terminal
voltage eabc−ref for PWM.

2) M2: Terminal Voltage-Ref Module: The 2nd module
(M2) is named the ‘Terminal Voltage-ref Module’ since it
directly generates the reference terminal voltage. The control
model is formulated using Kirchhoff’s current law (KCL) from
eabc to uabc and conducting Park transformation. Then, after
implementing proportional-integral (PI) controllers, the phys-
ical model and control transfer function in dq framework are
shown in (1) and (2), respectively.
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3) M3: Current-Ref Module: The 3rd module (M3) is
named the ‘Current-ref Module’ since it generates the ref-
erence current [idref , iqref ] for M2. For a GFL inverter, [idref ,
iqref ] are regulated based on the error between the actual output
and the reference value. Eqs. (3)-(4) show the transfer func-
tion of M3 using PI controllers, where two low-pass filters are
used to filter measured power output.[
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For a GFM inverter, its physical model is formulated using
Kirchhoff’s voltage law (KVL) at point uabc. After Park trans-
formation and PI controller integration, the algebraic equation
and control transfer function in dq framework are shown in (5)
and (6), respectively.
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4) M4: Power ∩ Voltage Module: The 4th module (M4)
is named the ‘Power ∩ Voltage Module’ which indicates the
fundamental difference between GFL and GFM inverters. A
GFL inverter is controlled as a current source and requires a
power reference as an input, while a GFM inverter is con-
trolled as a voltage source and needs a voltage reference as
an input [39]. Another big difference is that a GFL inverter
needs a PLL to track the phase of the main grid while a GFM
inverter is self-synchronized [53]. Droop control is the most
widely used control method in microgrids. It takes advan-
tage of the coupling between power generation and the grid
V-f [54]. Typically, an inductive microgrid employs the P − f
and Q − V droop curves, while resistive microgrids uses the
reverse P−V and Q−f droop curves. The M4 plotted in Fig. 2
shows the control blocks for an inductive microgrid, and their
control models are shown below.
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To provide more inertia support to microgrids leverag-
ing DERs, the virtual synchronous generator (VSG) control
method is proposed to emulate the behavior of synchronous
generators [55]. Mathematically speaking, the VSG belongs to
proportional-differential control. Below is the transfer function
of the GFL and GFM inverters implementing the VSG.
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Readers are encouraged to check Refs. [56], [57] for some
modified VSG and droop control techniques that provide more
effective inertia support to microgrids.

5) M5: Auxiliary Service ∪ Optimization Module:
Microgrids exploiting M1-M4 can withstand normal distur-
bances such as load changes and plug-and-play generations.
Then, M5 participates in grid optimization and provides
auxiliary services, i.e., optimized active and reactive power
sharing, demand-side management, and V-f support [58].
In order for more economic energy management, M5 also
calculates the steady-state setting points such as (P0, Q0)

by solving optimal power flow [59]. On the other hand, it
generates the supplementary signals for controller parameters
and outputs [60] according to the targets of auxiliary service.
Review papers regarding M5 can be seen in [61], [62].

C. Motivation for MFRL

1) Challenges in the Existing Control Framework: The
high-level research map and modularized control blocks
clearly show how existing microgrids are controlled. However,
the evolution of microgrids brings more challenges to the exist-
ing control framework. The challenges are five-fold: i). The
penetration of DERs results in higher uncertainties. Although
some robust and stochastic techniques have been employed to
address the emerging uncertainties, they are somehow conser-
vative and the probability distribution function still needs to be
accurately estimated. ii). It is difficult to model each element of
microgrids in detail, i.e., customer behavior. The information
that is difficult to model is critical for energy management
in M5. iii). Some system parameters are not always accessi-
ble; even if accessible, they are not necessarily accurate. iv).
Microgrid dynamics are becoming faster because more and
more inverter-based resources participate in grid services by
adaptively changing their control modes and control parame-
ters. Then, the existing controllers may not be valid anymore.
v).Smart grids call for autonomous microgrids, with which
engineers and grid operators are free from parameter tuning
for modules in Fig. 2. Even for other model-free controllers,
they still need elaborate tuning for hyper-parameters, i.e., the
membership functions of the fuzzy logic controller and the
coefficients of the adaption law.

2) Why MFRL?: Microgrid operators have access to mas-
sive data sampled by phasor measurement units (PMUs) and
advanced metering infrastructures (AMIs) now [63]. It opens
the possibility for data-driven control. MFRL is an advanced
decision-making technique with goal-oriented, data-driven,
and model-free characteristics [64]. With the help of MFRL,
the uncertainties of the model and parameters may be mit-
igated through repeated interaction between the environment
and the RL agent. It is also beneficial to the autonomous oper-
ation of microgrids because the RL agent can actively update
its policy based on the microgrid dynamics.

To better fuse MFRL with the existing microgrid control
framework, it is necessary to first know the capabilities of
each MFRL algorithm, and then choose the proper algorithms
in real applications. Thus, the following sections introduce the
map of MFRL, the features of main stream MFRL algorithms,
and how MFRL can be incorporated into the existing microgrid
control framework.

III. MODEL-FREE REINFORCEMENT LEARNING

This section first gives a brief introduction to RL and then
summarizes the methodology of MFRL.

A. Formulation of RL

RL is a basic ML paradigm formulated as an MDP. As
shown in Fig. 3(a), the environment defines the state space
S and the agent holds the action space A. The agent keeps
interacting with the environment to update its policy π that maps
the environment states to actions. In each iteration, the agent
chooses action at ∈ A according to π . Then, the environment
generates the next state according to its intrinsic transition
probability P(st+1 | st, at) : S × A → �(S) and feeds back
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Fig. 3. The framework and map of MFRL. (a) agent-environment interaction
in an MDP. (b) methodology.

the instant reward r(st, at) to the agent. The iteration is repeated
until the agent finds the optimal policy π∗ as follows.

π∗ ∈ arg max
π

J(π) = Eπ

∞∑
t=1

γ tr(st, at) (11)

where γ is the discounting factor and J(π) is the infinite
horizon discounted reward. The optimal policy guarantees the
maximum accumulated reward obtained from the environment.

In MFRL, A and S can be either continuous or discrete.
For the sake of illustration, this paper uses discrete notation
to introduce the methodology.

B. Methodology of MFRL

Fig. 3(b) shows the mainstream MFRL methodology. They
are categorized into value-based and policy-based algorithms.

1) Value-Based Algorithms: The value-based methods
learn the Q-function that estimates the Q-value of state-action
pairs (s, a) ∈ S ×A. The Q-function is denoted as Qπ , based
on which the agent can choose the optimal actions with the
maximum Q-value. According to the Bellman equation,

Qπ (st+1, at+1) = r(st, at) + γ Est+1,at+1 Qπ (st+1, at+1) (12)

Through temporal-difference learning, Qπ can finally con-
verge to its true value under mild assumptions [65].

Qπ (st, at) = Qπ (st, at)

+ α

[
rr + γ max

at+1∈A
Qπ (st+1, at+1) − Qπ (st, at)

]
(13)

The approximated Qπ was first recorded in a Q-table [66].
Considering the table’s inefficiency, the deep Q-learning
network (DQN) [67] replaced the Q-table with a deep artificial
neural network (ANN), which has a strong fitting capa-
bility that maps the states to Q-value with less memory.
Then, the DQN was further improved using the following
tricks [68]:

• (Prioritized) Reply Buffer enhances the training efficiency.
• Double Network relieves the overestimation of Q-value.
• Dueling Network improves the performance in high-

dimensional action space.
Later, a distributional DQN [69] and a quantile regression

DQN [70] were proposed using stochastic policy and dis-
tributed training, and they were combined as ‘Rainbow DQN’
by David Silver [71] in 2017.

2) Policy-Based Algorithms: Policy gradient methods
directly learn the parameterized policy based on feedback
from the environment. Before diving into policy gradient
algorithms, it is necessary to introduce the actor-critic (AC)
structure. The AC structure has two ANN models that
optionally share parameters: i) Critic updates the parameters
of value functions; ii) Actor updates the policy parameters
under the guidance of the critic. Under the AC structure,
policy function can be either stochastic or deterministic. The
stochastic policy is modeled as a probability distribution:
a ∼ πθ (a | s), while the deterministic policy is modeled
as a deterministic decision: a = πθ(s). They classify the
policy-gradient methods.

a) Stochastic Policy: As for stochastic policy a ∼ πθ (a | s),
the gradient of the expected reward to policy parameters is
calculated according to policy gradient theorem [72] as follows

∇J(θ) =
∑
s∈S

μθ(s)
∑
a∈A

πθ (a | s)Qπθ (s, a)∇θ ln πθ (a | s)

(14)

where μθ(S) ∈ �(S) is the state distribution. Then, the policy
is updated using the gradient ascent method

θt+1 = θt + η∇J(θt) (15)

where η is the learning rate. It is necessary to avoid large
updating of step size in each iteration since the policy gradi-
ent readily falls into a local maximum. To make the policy
gradient training more stable, trust region policy optimization
(TRPO) added a Kullback–Leibler (KL) divergence con-
straint to the process of policy updating [73]. It solves the
optimization problem as follows

max
θ

J(θ) = E

[
π ′

θ (a | s)

πθ (a | s)
Âθ (a | s)

]
s.t. E

[
DKL

(
πθ

′‖πθ

)] ≤ δ (16)

where π ′
θ is the new policy; DKL is the KL-divergence.

Considering the complexity of measuring DKL in each
update, proximal policy optimization (PPO) was developed
to accelerate the training [74]. PPO uses a clipped surrogate
objective while retaining similar performance as follows
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max
θ

J(θ) = E

{
min

[
πθ

′(a | s)

πθ (a | s)
Âθ (a | s)

clip

(
πθ

′(a | s)

πθ (a | s)
, 1 − ε, 1 + ε

)
Âθ (a | s)

]}
(17)

In PPO, the actor network and critic network share the
same learned features, and this may result in conflicts between
competing objectives and simultaneous training. Hence, a pha-
sic policy gradient (PPG) separates the training phased for
actor and critic networks [75], which leads to a significant
improvement in sampling efficiency. Other improved versions
of the AC structure include advantage actor-critic (A2C), asyn-
chronous advantage actor-critic (A3C), and soft actor-critic
(SAC). A2C and A3C both enable parallel training using
multiple actors, but the actors of A2C work synchronously,
and those of A3C work asynchronously [76]. SAC improves
the exploration of agents incorporating policy entropy [77].

b) Deterministic Policy: The gradient of deterministic policy
a = πθ (s) is expressed as

∇J(θ) = Es∼μθ ∇aQπθ (s, a)
∣∣
a=πθ (s)∇θπθ (s) (18)

The deterministic policy gradient (DPG) method firstly used
deterministic policy [78]. Then, the deep deterministic policy
gradient (DDPG) was developed by combining the DPG and
DQN [79]. The DDPG extends the discrete action space of
the DQN to continuous space while learning a determinis-
tic policy. Later, the twin delayed deep deterministic (TD3)
policy gradient applied three tricks, i.e., clipped network,
delayed update of critic network, and target policy smoothing
to prevent the overestimation of Q-value in the DDPG.

3) Summary: The DQN, DDPG, and A3C are three basic
paradigms of MFRL representing value-based methods, deter-
ministic policy methods, and stochastic policy methods. Their
upgraded versions, the Rainbow DQN, TD3, and PPG, SAC
represent the state-of-the-art of each paradigm, which are the
best choices for fusing MFRL with the existing microgrid con-
trol framework. Moreover, the value-based methods such as
DQN are more suitable for discrete control tasks like trans-
former tap and switch on/off control, while the policy-based
methods like TD3 are more suitable for continuous tasks such
as active power and reactive power reference generation.

IV. FUSION OF MODEL-FREE REINFORCEMENT

LEARNING WITH MICROGRID CONTROL

Section II and Section III introduce the existing microgrid
control framework and the MFRL, separately. This section fur-
thers the fusion details, including the application guidelines
and the challenges and insights of using MFRL in microgrid
control.

A. Application Guideline

1) Problem Formulation: Microgrid control is intrinsic to
an infinite MDP that MFRL can solve. Ref. [80] answered
the question of ‘How,’ that is, ‘How to formulate a control
problem that can be solved by MFRL?,’ which includes four
steps: i). Determine the environment, state space S , and action

space A; ii) Design reward function R according to control
targets; iii). Select proper learning algorithm; iv). Train agent
and validate the learned policy. The four steps are exemplified
below based on two specific application scenarios, frequency
regulation and voltage regulation.

i) Formulation of frequency regulation: Eqs. (19)-(21) show
the general configuration of a MFRL agent for frequency reg-
ulation in microgrids. The agent has unique action space when
fusing with different modules in Fig. 2.

Sf :=
[
(wi)i∈N ,

(
Pij, Qij

)
ij∈ε

]
(19)

Af =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M2 :
[(

eabc,i
)

i∈I
]

M3 :
[(

id,i, iq,i
)

i∈I
]

M4 :
[(

Pref ,i, Qref ,i
)

i∈IGFL
,(

wref ,i, udref ,i
)

i∈IGFM

]
M5 :

[(
P0,i, Q0,i,�xi

)
i∈I

]
(20)

Rf (t) = −
∑
i∈N

[wi(t) − w0]2 (21)

where wi is frequency at each bus i; (Pij, Qij) is the power
flow over line from bus i to bus j; M2-M5 are the modules
summarized in Fig. 2; I is the inverter set; IGFL and IGFM

are the set of GFL inverters and GFM inverters, respectively.
Since the control target is to maintain frequency, the deviation
of frequency is designed as reward function.

ii) Formulation of voltage regulation: Eqs. (22)-(24) show
the general configuration of a MFRL agent for frequency
regulation in microgrids.

Sv :=
[
(vi)i∈N ,

(
Pij, Qij

)
ij∈ε

, (τi)i∈T
]

(22)

Av =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M2 :
[(

eabc,i
)

i∈I
]

M3 :
[(

id,i, iq,i
)

i∈I
]

M4 :
[(

Pref ,i, Qref ,i
)

i∈IGFL
,(

wref ,i, udref ,i
)

i∈IGFM

]
M5 :

[(
P0,i, Q0,i,�xi

)
i∈I , (τi)i∈T

]
(23)

Rv(t) = −
∑
i∈N

[vi(t) − v0]2 (24)

where vi is the voltage magnitude of bus i, and τi is the tap
positions of the on-load tap changers (OLTPs) of transformers.
Compared with frequency regulation, the agent has distinct
action of OLTPs in M5 for voltage regulation.

After selecting S , A, and R, the mainstream MFRL algo-
rithms are selected to update the policy of the agent. Note that
the selected algorithms should be applicable to the application
scenarios. For example, the discrete algorithm in Fig. 3(b) is
better for discrete control actions like OLTPs. In addition, the
above formulations give a general form of configurating an
MFRL agent for microgrid control, and they can be modified
according to customized control tasks.

In addition to problem formulation, there are another two
fundamental questions regarding ‘What’ that remain to be
answered. They are

• Q1: What kinds of tasks is MFRL suitable for?
• Q2: How can MFRL be fused with the existing microgrid

control framework?
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The following two subsections tries to answer these two
questions based on the state-of-the-art of MFRL. The answers
can serve as the application guideline for adopting MFRL in
microgrids.

2) What Kinds of Tasks Is MFRL Suitable For?: In general,
MFRL is suitable for tasks with the following four features:

i) Relatively unchanged environment. Policy learned by RL
agents reflects the physical law in the training environments,
which fundamentally determines the state transition proba-
bility. As shown in the diagram in Fig. 3(a), environment
generates rewards based on P(st+1 | st, at) : S × A → �(S)

and feed the rewards to RL agent for policy updating. A new
environment has distinct state transition probability function,
which may have conflicts with the buffer data and trained pol-
icy. Thus, the working environment should not differ too much
from the training environment. That’s why in Tab. I, the train-
ing microgrids and validation microgrids usually have fixed
topology and predefined disturbances.

ii) Clear control target. Clear control targets facilitate the
design of reward functions. The objective function in the
optimization problem, optimal control, and MPC can be
directly transformed to a reward function. With the func-
tion grouping and hierarchical structure in Fig. 1, the specific
control targets can be briefly categorized into frequency reg-
ulation, voltage regulation equation, and economic benefits.
Then, the voltage deviation [81], frequency deviation [87] and
energy management cost/revenue [83], [84] are transformed
into reward functions in (21) and (24). Crucially, a well-
designed reward function gives the MFRL agent the best guide
to learn the optimal policy.

iii) Available data. Environmental data must be accessible if
the agent interacts with a real system. Also, the real environ-
ment should tolerate improper actions for exploration. If the
environment is a simulator, the simulation should run quickly
to allow for thousands of repetitions. For example, a fast a sim-
ulator and a real tokamak vessel were developed for training
and validation in [30].

iv) Acceptable control complexity. ‘Acceptable’ means that
the control complexity should be neither too low nor too high.
For each perspective summarized in the high-level research
map, there is no research trying to replace all the controllers.
Most of the research just focused on a specific task that a
model-based controller cannot handle but MFRL can, because
there is no need to replace a simple model-based controller that
has good performance and it is unrealistic to let AI directly
control the whole microgrid for now.

3) How Can MFRL Be Fused With the Existing Microgrid
Control Framework?: MFRL is essentially a useful tool that
serves microgrid control. It follows microgrid control targets
when fused with the existing control framework. In general,
there are three ways of fusing as follows.

i). Model identification and parameter tuning. MFRL assists
in identifying the uncertain models of the grid components
accurately. Also, it can address the uncertainty and unavail-
ability of model parameters and release the grid operators from
complex and time-consuming parameter tuning, especially
tuning a large model with many parameters.

Fig. 4. Microgrid testbeds [34] and MFRL environment.

ii). Supplementary signal generation. MFRL can generate
the supplementary control signals for model-based controllers,
with which the current controllers can be made more robust
and deal with complicated control tasks.

iii). Controller substitution. MFRL can completely replace
the existing model-based controllers if they are no longer
effective. It needs fewer inputs but has better performance
than model-based controllers owing to the ANN’s strong fitting
capability,

In general, the application guide is summarized based on
the existing microgrid control research that employ MFRL.
The detailed literature review will be performed in the next
subsection.

B. Literature Review

Sorted in the way of fusing, Table I summarizes the liter-
ature adopting MFRL in microgrids, where the key features
are listed in the last column. In general, MFRL has fused
with the optimization and control tasks in microgrids. Most
research has tried to replace the existing model-based con-
trollers with MFRL agents. In addition, more researchers focus
on optimization problems that have clear targets. The objec-
tive functions are directly transformed or incorporated into the
reward function.

C. Challenges and Insights

Although many researchers have been investigating the
applications of MFRL in microgrid control, there is still
a clear gap between theory (simulation) and practice (real
microgrid operation). The main concerns are the aspects of
the environment, scalability, generalization, security, and sta-
bility. This subsection summarizes these challenges and gives
some insights on how to tackle them.

1) Environment:
• Challenges: As shown in Fig. 4, the conventional model-

based microgrid controllers have several types of tests before
implementation, i.e., simulation, controller hardware in the
loop (HIL) test, power HIL test, subscale system test, and full
system test. They are the options for the MFRL environment.
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TABLE I
LITERATURE SUMMARY OF IMPLEMENTING MFRL IN MICROGRIDS

Existing literature suggests offline training in the numeri-
cal simulator and online implementation in real systems [95]
because the RL agent requires sufficient exploration dur-
ing training which is unrealistic in HIL or real systems.

That’s why early RL was mainly used in video games,
where the simulator could perfectly emulate the working
environments. Among the current power testbed types, sim-
ulation has the highest coverage of test scenarios but the
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least fidelity, which is the major concern of employing
MFRL. Even if the agent learned a good policy in a numer-
ical simulator, it may not function effectively in a real
microgrid.

• Insights: As for numerical simulators, they are on the way
to developing a more accurate and faster toolbox capable of
serving as a high-fidelity MFRL environment. Improved power
system modeling [101], [102] and more efficient numerical
simulation techniques, such as the hybrid symbolic-numeric
framework [103], are currently being developed. Further, it
would be better to develop a standardized and customized
training environment that assists in setting up the interface
with power simulators such as PSCAD, PSSE, and MATLAB-
Simulink, just like “Gym” in the field of deep RL. The
standardized environment can also serve as a baseline for algo-
rithm tests and comparisons. On the other hand, it is a good
way to design a HIL test system that is equipped with special-
ized protection and can tolerate random exploration to some
degree. In this way, the HIL test system may work as an envi-
ronment that closely resembles an actual microgrid. Moreover,
MFRL agent can learn from historical data. To improve the
learning efficiency and address the problem of real-data insuf-
ficiency, some advanced techniques have been developed. For
example, i) long-tail learning [104] can learn effectively on
biased data set; ii). deep active learning [105] can also be
used to more efficiently label disturbance data.

2) Scalability:
• Challenges: MFRL suffers from the curse of dimensional-

ity like some model-based controllers. The expansion of state
space and action space will result in an exponential increase in
control complexity, thereby increasing the difficulty of explo-
ration and training. Existing MFRL research on microgrid
control mainly focuses on some small-scale problems [98] and
utilizes ANN with a few layers. To promote the application
of MFRL in microgrid control, it is necessary to improve its
scalability.

• Insights: On the one hand, it is an effective way to
reduce control complexity by integrating domain knowledge
into problem formulation. For example, [106] narrowed down
the learning space and avoided baseline violations based on
the generation constraints. On the other hand, it would be bet-
ter to increase the capability of existing MFRL models by:
i). increasing the exploration efficiency by designing guided
exploration strategies like evolutionary RL [107]; ii). increas-
ing the fitting capability of ANN through the modern design
of network structures, i.e., sequential-to-sequential networks
and transformers [108]; iii). increasing the training efficiency
through distributed techniques like federated learning [109]
and edge computing [110]. All of these methods can help
relieve the pressure on training and make MFRL more scalable
for microgrid control.

3) Generalization:
• Challenges: Similar to DL, MFRL was accused of “inabil-

ity of generalization” because a well-trained agent does not
function effectively in a changing environment [111]. Even in
an unchanged environment, the diversity of disturbances may
also distort the agent. In microgrid control, it is difficult to

cover all the disturbances during the training, which is critical
on the condition that RL agents replace the existing controllers.

• Insights: Firstly, rich training scenarios benefit the general-
ization of MFRL. For example, [112] addressed the uncertainty
of Volt-Var control in active distribution systems by generat-
ing a bunch of offline training scenarios. It is also a good way
to employ robust RL that can tolerate the uncertainty of the
environment [113]. Further, transfer learning can also enhance
the MFRL’s generalization capability, which has proven to be
effective in the field of DL.

4) Security:
• Challenges: Security is referred to as static security in this

paper, meaning that system state should respect the static phys-
ical constraints to avoid damaging the device. In microgrids,
these constraints can be thermal limit constraints and con-
trol signal constraints decided by the physical capability of
microgrid components. They are usually explicit and known
according to microgrid device manufacture, and there are
IEEE Standards setting the secure operational range of volt-
age and frequency. However, due to the non-interpretability of
ANN, the learned policy cannot always guarantee each vari-
able respect the constraints. Furthermore, it is also a problem
to guarantee secure exploration in a HIL or real system. In
the future, MFRL agents may be trained in a HIL microgrid
to overcome the shortcomings of numerical simulators, where
the exploration cannot violate the physical constraints of the
HIL or real system for sure.

• Insights: Through constrained RL [28], [114] and safe
RL [115], [116], the actions of RL agents can be pro-
jected to a safety region and thus always respect the physical
operational constraints. In addition, physics-constrained and
physics-informed deep learning [117] is also under develop-
ment and can be integrated into MFRL to address security
concerns. In physics-constrained deep learning, a “safety
layer” is often leveraged to maintain constraint satisfaction
under different physics knowledge, while physics-informed
learning embeds the knowledge of physical laws that govern
by partial differential equations into training.

5) Stability:
• Challenges: Stability is referred to as dynamic stabil-

ity under a disturbance. According to the definition in [118],
the stability is the ability of an electric power system, for
a given initial operating condition, to regain a state of
operating equilibrium after being subjected to a physical
disturbance, with most system variables bounded so that prac-
tically the entire system remains intact. Model-based microgrid
controllers must pass the stability test through eigenvalue
analysis or the Lyapunov function validation before imple-
mentation. However, the employment of MFRL challenges the
model-based criteria because the uninterpretable RL agents
dramatically change the closed-loop dynamics of microgrids.

• Insights: Integrating domain knowledge is the best way to
guarantee microgrid stability for now. As for the first two fus-
ing approaches, i) model identification and parameter tuning
and ii) supplementary signal generation, model-based stabil-
ity criteria can still be used to verify the system stability
because the MFRL agent doesn’t break down closed-loop
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systems. MFRL complements the model-based approaches
and improves them in a data-driven way. The supplemen-
tary signals generated by the MFRL agent can be viewed
as hyper-parameters. Through techniques like semi-definite
programming (SDP), linear matrix inequality (LMI), and sum-
of-square programming [119], the security range of these
hyper-parameters can be obtained to guarantee dynamic sta-
bility [120]. As for the third way of fusion, the complete
controller substitution, MFRL agents dramatically change the
closed-loop dynamics and make the system difficult to model.
To address the stability issues in this condition, this paper
gives three potential solutions. i). enrich the training data and
training scenarios. The learned policies basically reflect the
state transition of the environment. If the training data set has
covered sufficient instability scenarios, the corresponding pun-
ishment reward can help RL agents avoid unstable actions.
ii). use a physics-informed approach by integrating model-
based stability criteria into MFRL training. For example, the
Lyapunov function [121] and the Gaussian process estima-
tion [116] can be used to generate stability criteria for MFRL
training, and [122] proposed a Lyapunov-regularized RL for
transmission system transient stability. iii).perform policy sta-
bility validation through time-domain simulation (TDS). TDS
has been widely used in power systems to validate the stability
of nonlinear components or modules. It can also help validate
the stability of the inexplicable RL policy.

V. CONCLUSION

Model-based controllers are still the foundation of existing
microgrid control systems. However, the emerging challenges
caused by the uncertainty of DERs and extreme weather call
for advanced control techniques. As a model-free and data-
driven approach, MFRL opens the possibility of non-linear,
high-dimensional, and high-complex microgrid control. It may
contribute to a huge upgrade of the existing control framework.

Against this background, this paper firstly performs a compre-
hensive review of the current microgrid control framework and
then summarizes the applications of MFRL. In general, there are
three ways of fusing MFRL with the existing model-based con-
trollers, including i). model identification and parameter tuning,
ii). supplementary signal generation, and iii). controller substi-
tution. For now, there is still an obvious gap between the theory
(simulation) and its practical application. The challenges are
mainly categorized into environment, scalability, generalization,
security, and stability. With the rapidly developed techniques
in the fields of both power and artificial intelligence, the author
believes the challenges summarized in this paper will finally
be overcome. Someday in the future, the MFRL can perfectly
fuse with the existing microgrid control framework.

REFERENCES

[1] D. E. Olivares et al., “Trends in microgrid control,” IEEE Trans. Smart
Grid, vol. 5, no. 4, pp. 1905–1919, Jul. 2014.

[2] M. Farrokhabadi et al., “Microgrid stability definitions, analysis, and
examples,” IEEE Trans. Power Syst., vol. 35, no. 1, pp. 13–29,
Jan. 2019.

[3] J. Liu, Y. Miura, H. Bevrani, and T. Ise, “Enhanced virtual synchronous
generator control for parallel inverters in microgrids,” IEEE Trans.
Smart Grid, vol. 8, no. 5, pp. 2268–2277, Sep. 2017.

[4] T. Chen, S. Bu, X. Liu, J. Kang, F. R. Yu, and Z. Han, “Peer-to-peer
energy trading and energy conversion in interconnected multi-energy
microgrids using multi-agent deep reinforcement learning,” IEEE
Trans. Smart Grid, vol. 13, no. 1, pp. 715–727, Jan. 2022.

[5] H. Li, F. Li, Y. Xu, D. T. Rizy, and S. Adhikari, “Autonomous
and adaptive voltage control using multiple distributed energy
resources,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 718–730,
May 2013.

[6] B. She, F. Li, H. Cui, J. Wang, Q. Zhang, and R. Bo, “Virtual inertia
scheduling for power systems with high penetration of inverter-based
resources,” 2022, arXiv:2209.06677.

[7] C. Ju, P. Wang, L. Goel, and Y. Xu, “A two-layer energy management
system for microgrids with hybrid energy storage considering degra-
dation costs,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6047–6057,
Nov. 2018.

[8] M. Rezkallah, A. Chandra, B. Singh, and S. Singh, “Microgrid:
Configurations, control and applications,” IEEE Trans. Smart Grid,
vol. 10, no. 2, pp. 1290–1302, Mar. 2019.

[9] N. Nikmehr and S. N. Ravadanegh, “Optimal power dispatch of multi-
microgrids at future smart distribution grids,” IEEE Trans. Smart Grid,
vol. 6, no. 4, pp. 1648–1657, Jul. 2015.

[10] B. She, Y. Dong, and Y. Liu, “Time delay of wide area damping
control in urban power grid: Model-based analysis and data-driven
compensation,” Front. Energy Res., p. 526, Apr. 2022, Art. no. 895163.

[11] A. Bidram and A. Davoudi, “Hierarchical structure of microgrids con-
trol system,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1963–1976,
Dec. 2012.

[12] D. Wu, F. Tang, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero,
“A control architecture to coordinate renewable energy sources and
energy storage systems in islanded microgrids,” IEEE Trans. Smart
Grid, vol. 6, no. 3, pp. 1156–1166, May 2015.

[13] B. Adineh, R. Keypour, P. Davari, and F. Blaabjerg, “Review of har-
monic mitigation methods in microgrid: From a hierarchical control
perspective,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 9, no. 3,
pp. 3044–3060, Jun. 2021.

[14] J. M. Guerrero, M. Chandorkar, T.-L. Lee, and P. C. Loh, “Advanced
control architectures for intelligent microgrids—Part I: Decentralized
and hierarchical control,” IEEE Trans. Ind. Electron., vol. 60, no. 4,
pp. 1254–1262, Apr. 2013.

[15] M. H. Andishgar, E. Gholipour, and R.-A. Hooshmand, “An overview
of control approaches of inverter-based microgrids in islanding mode
of operation,” Renew. Sustain. Energy Rev., vol. 80, pp. 1043–1060,
Dec. 2017.

[16] M. Ahmed, L. Meegahapola, A. Vahidnia, and M. Datta, “Stability and
control aspects of microgrid architectures—A comprehensive review,”
IEEE Access, vol. 8, pp. 144730–144766, 2020.

[17] Y. Han, K. Zhang, H. Li, E. A. A. Coelho, and J. M. Guerrero, “MAS-
based distributed coordinated control and optimization in microgrid and
microgrid clusters: A comprehensive overview,” IEEE Trans. Power
Electron., vol. 33, no. 8, pp. 6488–6508, Aug. 2018.

[18] R. R. Deshmukh, M. S. Ballal, and H. M. Suryawanshi, “A fuzzy
logic based supervisory control for power management in multibus
DC microgrid,” IEEE Trans. Ind. Appl., vol. 56, no. 6, pp. 6174–6185,
Nov./Dec. 2020.

[19] P. Garcia-Trivino, J. P. Torreglosa, L. M. Fernandez-Ramirez, and
F. Jurado, “Decentralized fuzzy logic control of microgrid for electric
vehicle charging station,” IEEE J. Emerg. Sel. Topics Power Electron.,
vol. 6, no. 2, pp. 726–737, Jun. 2018.

[20] H. Zhang, J. Zhou, Q. Sun, J. M. Guerrero, and D. Ma, “Data-driven
control for interlinked AC/DC microgrids via model-free adaptive con-
trol and dual-droop control,” IEEE Trans. Smart Grid, vol. 8, no. 2,
pp. 557–571, Mar. 2017.

[21] W. Zhang, D. Xu, B. Jiang, and T. Pan, “Prescribed performance based
model-free adaptive sliding mode constrained control for a class of
nonlinear systems,” Inf. Sci., vol. 544, pp. 97–116, Jan. 2021.

[22] F. Rodríguez, A. M. Florez-Tapia, L. Fontán, and A. Galarza,
“Very short-term wind power density forecasting through artificial
neural networks for microgrid control,” Renew. Energy, vol. 145,
pp. 1517–1527, Jan. 2020.

[23] F.-J. Lin, C.-I. Chen, G.-D. Xiao, and P.-R. Chen, “Voltage stabiliza-
tion control for microgrid with asymmetric membership function-based
wavelet petri fuzzy neural network,” IEEE Trans. Smart Grid, vol. 12,
no. 5, pp. 3731–3741, Sep. 2021.

[24] Y. Du et al., “Intelligent multi-zone residential HVAC control strat-
egy based on deep reinforcement learning,” Appl. Energy, vol. 281,
Jan. 2021, Art. no. 116117.



12 IEEE TRANSACTIONS ON SMART GRID

[25] Y. Du, F. Li, K. Kurte, J. Munk, and H. Zandi, “Demonstration of
intelligent HVAC load management with deep reinforcement learning:
Real-world experience of machine learning in demand control,” IEEE
Power Energy Mag., vol. 20, no. 3, pp. 42–53, May/Jun. 2022.

[26] Z. Peng, J. Hu, Y. Zhao, and B. K. Ghosh, “Understanding the mech-
anism of human–computer game: A distributed reinforcement learning
perspective,” Int. J. Syst. Sci., vol. 51, no. 15, pp. 2837–2848, 2020.

[27] B. R. Kiran et al., “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 6,
pp. 4909–4926, Jun. 2022.

[28] L. Brunke et al., “Safe learning in robotics: From learning-based control
to safe reinforcement learning,” Annu. Rev. Control, Robot., Auton.
Syst., vol. 5, pp. 411–444, May 2022.

[29] Z. Zhang, D. Zhang, and R. C. Qiu, “Deep reinforcement learning for
power system applications: An overview,” CSEE J. Power Energy Syst.,
vol. 6, no. 1, pp. 213–225, 2019.

[30] J. Degrave et al., “Magnetic control of tokamak plasmas through deep
reinforcement learning,” Nature, vol. 602, no. 7897, pp. 414–419, 2022.

[31] A. A. Anderson and S. Suryanarayanan, “Review of energy manage-
ment and planning of islanded microgrids,” CSEE J. Power Energy
Syst., vol. 6, no. 2, pp. 329–343, 2019.

[32] T. Hathiyaldeniye, C. Karawita, B. Bagen, N. Pahalawaththa, and
U. Annakkage, “Optimal controllers to improve transient recovery of
grid-following inverters connected to weak power grids,” IEEE Open
Access J. Power Energy, vol. 9, pp. 161–172, 2022.

[33] S. D’Silva, M. B. Shadmand, and H. Abu-Rub, “Microgrid control
strategies for seamless transition between grid-connected and islanded
modes,” in Proc. IEEE Texas Power Energy Conf. (TPEC), 2020,
pp. 1–6.

[34] IEEE Standard for the Specification of Microgrid Controllers, IEEE
Standard 2030.7-2017, 2017.

[35] B. She, F. Li, H. Cui, J. Wang, O. O. Snapps, and R. Bo, “Decentralized
and coordinated Vf control for islanded microgrids considering DER
inadequacy and demand control,” 2022, arXiv:2206.11407.

[36] W. Du et al., “A comparative study of two widely used grid-forming
droop controls on microgrid small-signal stability,” IEEE J. Emerg. Sel.
Topics Power Electron., vol. 8, no. 2, pp. 963–975, Jun. 2020.

[37] H. Li, F. Li, Y. Xu, D. T. Rizy, and J. D. Kueck, “Adaptive voltage
control with distributed energy resources: Algorithm, theoretical anal-
ysis, simulation, and field test verification,” IEEE Trans. Power Syst.,
vol. 25, no. 3, pp. 1638–1647, Aug. 2010.

[38] J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodriguez, “Control of power
converters in AC microgrids,” IEEE Trans. Power Electron., vol. 27,
no. 11, pp. 4734–4749, Nov. 2012.

[39] E. Rokrok, M. Shafie-Khah, and J. P. Catalão, “Review of primary
voltage and frequency control methods for inverter-based islanded
microgrids with distributed generation,” Renew. Sustain. Energy Rev.,
vol. 82, pp. 3225–3235, Feb. 2018.

[40] Y. Khayat et al., “On the secondary control architectures of AC
microgrids: An overview,” IEEE Trans. Power Electron., vol. 35, no. 6,
pp. 6482–6500, Jun. 2020.

[41] P. Singh, P. Paliwal, and A. Arya, “A review on challenges and tech-
niques for secondary control of microgrid,” in Proc. IOP Conf. Ser.
Mater. Sci. Eng., vol. 561, 2019, Art. no. 12075.

[42] P. Xie et al., “Optimization-based power and energy management
system in shipboard microgrid: A review,” IEEE Syst. J., vol. 16, no.
1, pp. 578–590, Mar. 2022.

[43] D. Kanakadhurga and N. Prabaharan, “Demand side management in
microgrid: A critical review of key issues and recent trends,” Renew.
Sustain. Energy Rev., vol. 156, Mar. 2022, Art. no. 111915.

[44] J. Almada, R. Leão, R. Sampaio, and G. Barroso, “A centralized and
heuristic approach for energy management of an AC microgrid,” Renew.
Sustain. Energy Rev., vol. 60, pp. 1396–1404, Jul. 2016.

[45] E. Espina, J. Llanos, C. Burgos-Mellado, R. Cardenas-Dobson,
M. Martinez-Gomez, and D. Sáez, “Distributed control strategies for
microgrids: An overview,” IEEE Access, vol. 8, pp. 193412–193448,
2020.

[46] A. Singhal, T. L. Vu, and W. Du, “Consensus control for coordinating
grid-forming and grid-following inverters in microgrids,” IEEE Trans.
Smart Grid, vol. 13, no. 5, pp. 4123–4133, Sep. 2022.

[47] A. K. Sahoo, K. Mahmud, M. Crittenden, J. Ravishankar,
S. Padmanaban, and F. Blaabjerg, “Communication-less primary
and secondary control in inverter-interfaced AC microgrid: An
overview,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 9, no. 5,
pp. 5164–5182, Oct. 2021.

[48] O. Babayomi et al., “Advances and opportunities in the model
predictive control of microgrids: Part II—Secondary and tertiary
layers,” Int. J. Electr. Power Energy Syst., vol. 134, Jan. 2022,
Art. no. 107339.

[49] F. Mohammadi et al., “Robust control strategies for microgrids: A
review,” IEEE Syst. J., vol. 16, no. 2, pp. 2401–2412, Jun. 2022.

[50] K. Moharm, “State of the art in big data applications in microgrid: A
review,” Adv. Eng. Inform., vol. 42, Oct. 2019, Art. no. 100945.

[51] S. Aslam, H. Herodotou, S. M. Mohsin, N. Javaid, N. Ashraf, and
S. Aslam, “A survey on deep learning methods for power load and
renewable energy forecasting in smart microgrids,” Renew. Sustain.
Energy Rev., vol. 144, Jul. 2021, Art. no. 110992.

[52] S. Zafar, M. A. Amin, B. Javaid, and H. A. Khalid, “On design of DC-
link voltage controller and PQ controller for grid connected VSC for
microgrid application,” in Proc. Int. Conf. Power Gener. Syst. Renew.
Energy Technol. (PGSRET), 2018, pp. 1–6.

[53] S. Dinkhah, J. S. Cuellar, and M. Khanbaghi, “Optimal power and
frequency control of Microgrid cluster with mixed loads,” IEEE Open
Access J. Power Energy, vol. 9, pp. 143–150, 2022.

[54] Z. Qu, J. C.-H. Peng, H. Yang, and D. Srinivasan, “Modeling and
analysis of inner controls effects on damping and synchronizing
torque components in VSG-controlled converter,” IEEE Trans. Energy
Convers., vol. 36, no. 1, pp. 488–499, Mar. 2021.

[55] X. Hou, Y. Sun, X. Zhang, J. Lu, P. Wang, and J. M. Guerrero,
“Improvement of frequency regulation in VSG-based AC microgrid via
adaptive virtual inertia,” IEEE Trans. Power Electron., vol. 35, no. 2,
pp. 1589–1602, Feb. 2020.

[56] H. Zhang, W. Xiang, W. Lin, and J. Wen, “Grid forming converters
in renewable energy sources dominated power grid: Control strategy,
stability, application, and challenges,” J. Modern Power Syst. Clean
Energy, vol. 9, no. 6, pp. 1239–1256, Nov. 2021.

[57] C. Huang, H. Zhang, Y. Song, L. Wang, T. Ahmad, and X. Luo,
“Demand response for industrial micro-grid considering photovoltaic
power uncertainty and battery operational cost,” IEEE Trans. Smart
Grid, vol. 12, no. 4, pp. 3043–3055, Jul. 2021.

[58] Y. Levron, J. M. Guerrero, and Y. Beck, “Optimal power flow in
microgrids with energy storage,” IEEE Trans. Power Syst., vol. 28,
no. 3, pp. 3226–3234, Aug. 2013.

[59] Z. Wang et al., “Adaptive harmonic impedance reshaping control strat-
egy based on a consensus algorithm for harmonic sharing and power
quality improvement in microgrids with complex feeder networks,”
IEEE Trans. Smart Grid, vol. 13, no. 1, pp. 47–57, Jan. 2022.

[60] I. De Mel, O. V. Klymenko, and M. Short, “Balancing accuracy
and complexity in optimisation models of distributed energy systems
and microgrids with optimal power flow: A review,” Sustain. Energy
Technol. Assess., vol. 52, Aug. 2022, Art. no. 102066.

[61] S. P. Bihari et al., “A comprehensive review of microgrid control mech-
anism and impact assessment for hybrid renewable energy integration,”
IEEE Access, vol. 9, pp. 88942–88958, 2021.

[62] Y. Gao and N. Yu, “Deep reinforcement learning in power distribu-
tion systems: Overview, challenges, and opportunities,” in Proc. IEEE
Power Energy Soc. Innovative Smart Grid Technol. Conf. (ISGT), 2021,
pp. 1–5.

[63] X. Chen, G. Qu, Y. Tang, S. Low, and N. Li, “Reinforcement learning
for decision-making and control in power systems: Tutorial, review,
and vision,” 2021, arXiv:2102.01168.

[64] H. Shuai, F. Li, H. Pulgar-Painemal, and Y. Xue, “Branching duel-
ing Q-network-based online scheduling of a microgrid with distributed
energy storage systems,” IEEE Trans. Smart Grid, vol. 12, no. 6,
pp. 5479–5482, Nov. 2021.

[65] J. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference learn-
ing with function approximation,” Lab. Inf. Decis. Syst., Massachusetts
Inst. Technol., Cambridge, MA, USA, Rep. LIDS-P-2322, 1996.

[66] J. N. Tsitsiklis, “Asynchronous stochastic approximation and Q-
learning,” Mach. Learn., vol. 16, no. 3, pp. 185–202, 1994.

[67] J. Chung, “Playing Atari with deep reinforcement learning,” in Proc.
NIPS, vol. 21, Dec. 2013, pp. 351–362.

[68] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. AAAI Conf. Artif. Intell., vol. 30,
2016, pp. 2094–2100.

[69] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional per-
spective on reinforcement learning,” in Proc. Int. Conf. Mach. Learn.,
2017, pp. 449–458.

[70] W. Dabney, M. Rowland, M. Bellemare, and R. Munos, “Distributional
reinforcement learning with quantile regression,” in Proc. AAAI Conf.
Artif. Intell., vol. 32, 2018, pp. 2892–2901.



SHE et al.: FUSION OF MICROGRID CONTROL WITH MFRL: REVIEW AND VISION 13

[71] M. Hessel et al., “Rainbow: Combining improvements in deep rein-
forcement learning,” in Proc. 32nd AAAI Conf. Artif. Intell., 2018,
pp. 3215–3222.

[72] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 12, 1999, pp. 1–7.

[73] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1889–1897.

[74] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.

[75] K. W. Cobbe, J. Hilton, O. Klimov, and J. Schulman, “Phasic policy
gradient,” in Proc. Int. Conf. Mach. Learn., 2021, pp. 2020–2027.

[76] V. Mnih et al., “Asynchronous methods for deep reinforcement learn-
ing,” in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[77] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 1861–1870.

[78] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and
M. Riedmiller, “Deterministic policy gradient algorithms,” in Proc. Int.
Conf. Mach. Learn., 2014, pp. 387–395.

[79] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” 2015, arXiv:1509.02971.

[80] X. Chen, G. Qu, Y. Tang, S. Low, and N. Li, “Reinforcement learn-
ing for selective key applications in power systems: Recent advances
and future challenges,” IEEE Trans. Smart Grid, vol. 13, no. 4,
pp. 2935–2958, Jul. 2022.

[81] D. Chen et al., “Powernet: Multi-agent deep reinforcement learning for
scalable powergrid control,” IEEE Trans. Power Syst., vol. 37, no. 2,
pp. 1007–1017, Mar. 2021.

[82] M. Gheisarnejad, H. Farsizadeh, and M. H. Khooban, “A novel non-
linear deep reinforcement learning controller for DC–DC power buck
converters,” IEEE Trans. Ind. Electron., vol. 68, no. 8, pp. 6849–6858,
Aug. 2021.

[83] C. Samende, J. Cao, and Z. Fan, “Multi-agent deep deterministic
policy gradient algorithm for peer-to-peer energy trading considering
distribution network constraints,” Appl. Energy, vol. 317, Jul. 2022,
Art. no. 119123.

[84] H. Shuai and H. He, “Online scheduling of a residential microgrid
via Monte-Carlo tree search and a learned model,” IEEE Trans. Smart
Grid, vol. 12, no. 2, pp. 1073–1087, Mar. 2021.

[85] S. Wang, R. Diao, C. Xu, D. Shi, and Z. Wang, “On multi-event co-
calibration of dynamic model parameters using soft actor-critic,” IEEE
Trans. Power Syst., vol. 36, no. 1, pp. 521–524, Jan. 2021.

[86] A. J. Abianeh, Y. Wan, F. Ferdowsi, N. Mijatovic, and T. Dragičević,
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