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❑ Introduction

• Islanded mode

Controlled as a voltage source;  
is self-generated

• Grid-connected mode

Controlled as current source;  
is set by phase-locking to the

main grid

⑥ Control techniques

①

⑤ Communication interface

④ Hierarchical structure

③ Timescale

② Function grouping

① Operation mode

Microgrid②③④⑤⑥
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M1

Modularized Control Block

Grid ∪ Inverter Module

Terminal Voltage-ref Module

Current-ref Module

Auxiliary Service ∪
Optimization Module

Note: ‘∪’ and ‘∩’are logic symbols.

• ‘∪’ means ‘and’

• ‘∩’ means ‘or’

Power ∩ Voltage Module
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Auxiliary service

(Supplementary signal)
Energy management

(Setting pointing)
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RL agent

( )t ta s
▪ Action space A

▪ Policy

Environment

1( , )t t ts a s+P

▪ State space S ▪ Reward function

▪ State transition probability
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This poster presents a comprehensive review of microgrid control is 

presented with its fusion of model-free reinforcement learning (MFRL). 

➢ Plotting of a high-level research map of microgrid control from the 

perspective of operation mode, function grouping, timescale, hierarchical 

structure, communication interface, and control techniques.

➢ Development of modularized control blocks to dive into the 

fundamental units of microgrids: GFL and GFM inverters.

➢ Introduction of the mainstream MFRL algorithms and summary of 

MFRL application guidelines

➢ Discussion of the primary challenges associated with adopting MFRL in 

microgrid control and providing insights for addressing these concerns.

Fig. 1 High-level research map of microgrid control

Fig. 2 Modularized control blocks of grid-following and grid-forming inverters

Fig. 3 Diagram of reinforcement learning

Fig. 4 Mainstream Reinforcement learning algorithm

❑ Reinforcement learning❑ Microgrid control framework

❑ Fusion of microgrid control with RL

➢ Model identification and parameter tuning

• Identify the models of the microgrid components

• Find the optimal parameters for grid components and controllers

i.e., inertia and damping estimation, PI gain tuning

➢ Supplementary signal generation

Generate supplementary control signals for existing model-based controller

i.e., supplementary signal of primary controller for better load sharing

➢ Controller substitution

Replace the model-based controllers and directly output control actions

i.e., RL-based dispatching, replace PI controllers with RL agent

❖Challenge and Vison 

➢ Environment

➢ Generalization ➢ Security

➢ Stability

➢ Scalability

• Better Numerical simulator: accurate 

and faster numerical simulator; 

general power environment like “gym”

• Better Hardware testbed: specialized 

testbed with protection schemes

• Training scenario generation: 

representative scenarios; 

standardized open source data

• Combined with advanced AI

techniques: robust RL; long-tail 

learning; transfer learning

• Reduce control complexity with

domain knowledge

• increase the exploration efficiency: 

evolutionary RL

• Distributed techniques: federated 

learning and edge computing 

• Constrained RL and Safe RL: 

respect physical constraints

• Physics-constrained deep 

learning and Physics-informed 

deep learning: embeds the 

knowledge of physical laws into 

training

• Integrate model-based criteria: semidefinite 

programming (SDP), linear matrix inequality 

(LMI), Lyapunov function

• Enrich training scenarios

as much as possible

• Policy validation through

time domain simulation 

❑ Conclusions

➢ There are three ways of fusing MFRL with the existing model-based 

controllers, including i). model identification and parameter tuning, ii). 

supplementary signal generation, and iii). controller substitution.

➢ The main challenges of employing MFRL in microgrid control are 

associated with the environment, scalability, generalization, security, and 

stability, and there are corresponding strategies to address these 

concerns.


